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ABSTRACT

We use covariant techniques to study the non-linear evolution of self-gravitating, non-
relativistic media. The formalism is first applied to imperfect fluids, aiming at the kinematic
effects of viscosity, before extended to inhomogeneous magnetized environments. The non-
linear electrodynamic formulae are derived and successively applied to electrically resistive
and to highly conductive fluids. By nature, the covariant equations isolate the magnetic effects
on the kinematics and the dynamics of the medium, combining mathematical transparency
and physical clarity. Employing the Newtonian analogue of the relativistic 1 + 3 covariant
treatment also facilitates the direct comparison with the earlier relativistic studies and helps
to identify the differences in an unambiguous way. The purpose of this work is to set the
framework and take a first step towards the detailed analytical study of complex non-linear
systems, like non-relativistic astrophysical plasmas and collapsing protogalactic clouds.

Key words: hydrodynamics – MHD.

1 IN T RO D U C T I O N

General relativity is believed to describe strong gravitational fields
and also to determine the large-scale dynamics of our Universe.
Nevertheless, when the gravitational field is weak and on scales
well inside the Hubble length, Newtonian gravity remains a very
good approximation. The same is also true when dealing with low-
temperature (cold) plasmas, where the effects of special relativity
are negligible. All these mean that Newtonian physics remain a very
dependable mathematical tool for a variety of astrophysical and
cosmological studies. In particular, the theory can offer very useful
insights regarding the behaviour of complex non-linear systems, like
a collapsing protogalactic cloud for example. Moreover, despite the
fundamental differences between Newtonian and relativistic fluid
dynamics, the two theories still share many close parallels. These
analogies become more prominent and clear when using relative-
motion descriptions, such as those the relativistic 1 + 3 covariant
formalism and its Newtonian counterpart are based upon. Here, we
will use the latter.

The covariant approach to fluid dynamics assumes the existence
of a unique vector field that represents the average velocity of the
matter at each point in space, or at each space–time event in the case
of a relativistic study. The formalism offers a Lagrangian descrip-
tion, where every kinematic and dynamic quantity are decomposed
down to its irreducible parts; a splitting that combines mathemat-
ical compactness and clarity with physical transparency. The fluid
kinematics, in particular, are monitored through a scalar, a vector
and a tensor field that, respectively, describe the average volume
evolution, the rotational behaviour and the shear deformation of
any given fluid element. The evolution of these variables is deter-
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mined by a set of three propagation equations, supplemented by an
equal number of constraints. Once the full (non-linear) expressions
have been obtained, the covariant formulae can be applied to any
physical environment by simply adjusting the symmetries.

In the present article, we review the covariant approach to
Newtonian hydrodynamics and provide the complete set of the
non-linear propagation and constraint equations that describe a
bound, self-gravitating medium. We first consider the case of a
barotropic fluid and examine the kinematic implications of inho-
mogeneity. This means looking at the gravitational collapse, the
shear anisotropy and the rotational behaviour of the fluid. Our re-
sults show that overdensities tend to enhance the collapse, while
underdensities act against contraction or tend to accelerate the ex-
pansion. We also find that, under the barotropic-fluid assumption,
vorticity cannot be generated. At each step, we compare our New-
tonian expressions to their relativistic counterparts and establish
the main analogies and differences between the two. Exploiting the
advantages of the covariant expressions, we apply our non-linear
formulae to the case of an imperfect medium, in an attempt to in-
vestigate the role of viscosity. Among others, we find that a viscous
fluid will generally act as a source of rotation. Also, by involving
the internal properties of the fluid, we discuss how hydrodynamic
flows can be represented as purely gravitational motions and outline
the potential applications of this dynamical correspondence.

With the full hydrodynamic equations in hand, we proceed to in-
corporate magnetic fields into our study. Introducing an electron–ion
system and assuming overall charge neutrality, we derive the co-
variant magnetohydrodynamic (MHD) formulae for an electrically
resistive fluid. These include, for the first time in the Newtonian
limit, the covariant form of Maxwell’s equations and allow for a
direct comparison with their relativistic analogues. The evolution
of the B-field is monitored by looking at both the isotropic and
the anisotropic components of the magnetic pressure. Confining to
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a barotropic medium, we consider the effects of the field on the
fluid kinematics. The magnetic implications for gravitational col-
lapse, for example, are encoded in Raychaudhuri’s equation. The
latter reveals how increases in the pressure of the B-field assist the
contraction by adding to the gravitational attraction of the matter.
We also identify in covariant terms what is commonly referred to
as ‘magnetic braking’, and show how the effect results from the
elasticity (i.e. the tension) of the magnetic forcelines. As with hy-
drodynamics, we take every opportunity to compare our Newtonian
expressions to their general relativistic partners and identify all par-
allels and differences between the two sets. Thus, in contrast with
general relativity, we find that the magnetic pressure has no effect
on Newtonian vorticity. In agreement with the relativistic analysis,
on the other hand, the magnetic tension is found to affect rotation
and act as a source of it. Finally, by assuming a perfectly conductive
medium, we apply our results to the ideal MHD case, establish the
pattern of the magnetic evolution in such an environment and also
discuss how the MHD equations can be reduced to pure hydrody-
namic ones.

The main aim of this work is to introduce the key features of a
formalism that will be subsequently used in non-linear Newtonian
hydrodynamic and MHD studies. For this reason, we have gone
beyond the perfect-fluid approximation and incorporated viscosity
effects into our equations. Similarly, the MHD formalism has been
extended to allow for media of finite (non-zero) electrical resistivity.
Our targets are non-linear systems that are adequately described by
the Newtonian theory. These include non-relativistic astrophysical
plasmas and protogalactic clouds (of subhorizon size) that have
decoupled from the background expansion and started to collapse.

2 C OVA R I A N T H Y D RO DY NA M I C S

The covariant approach to fluid dynamics dates back to the
1950s and the work of Heckmann & Schücking (1955, 1956) and
Raychaudhuri (1957). The formalism was originally applied within
the Newtonian framework before extended to general relativistic
hydrodynamics and MHDs (see Ellis & van Elst 1998; Tsagas,
Challinor & Maartens 2008 for recent review articles and further
references). In the present section, we first review and later (see
Section 2.3–2.5) extend parts of Ellis (1971), where the reader is
referred for more details. Relative to that article, there are also sev-
eral notational differences, reflecting the presentation changes that
have taken place since the early 1970s. For an alternative, four-
dimensional covariant approach to Newtonian hydrodynamics we
refer the reader to Carter & Chamel (2004, 2005).

2.1 Self-gravitating fluids

We use fixed space coordinates {xa , a = 1, 2, 3} to define the metric
tensor h ab of the Euclidean space, so that v2 = habvavb for any vector
va . The above given metric and its inverse hab – with hachcb = δa

b and
δa

a = 3, where δab is the Kronecker symbol – are used to raise and
lower the tensor indices. When one uses Cartesian coordinates, as
we will be doing here, hab = δab, then, covariant and contravariant
components coincide and partial derivatives are the ‘correct’ spatial
derivatives (see Ellis 1971, 1990 for further details).1

1 In a general frame, hab �= δab and the covariant and contravariant tensor
components do not always coincide. Then, we need covariant, instead of
partial, derivatives to compensate for the ‘curvature’ of the system (Ellis
1971, 1990).

We adopt the fluid description, assuming the existence of a unique
vector field representing the average velocity of the matter at each
point. The three-velocity field va is tangent to the flow lines of
the comoving (fundamental) observers. The time derivative of a
tensorial quantity T is given by the convective derivative Ṫ = ∂t T +
va∂aT , where ∂a ≡ ∂/∂xa . Thus, the convective derivative of the
fluid velocity is

v̇a = ∂t va + vb∂bva, (1)

with ∂bva describing the spatial variations of the velocity field
(e.g. see Chandrasekhar 1961). Note that we adopt the Einstein
summation convection, according to which repeated indices are
summed. Like any second-rank tensor, the spatial derivative of va

decomposes as

∂bva = 1

3
�δab + σab + ωab, (2)

where � = ∂ava , σab = ∂〈bva〉 and ωab = ∂[bva].2 The tensor ∂bva

monitors the relative motion between two neighbouring fluid flow
lines.3 In particular, � determines the volume expansion, σab the
shear deformation and ωab the rotational behaviour of a given fluid
element. Positive values for � correspond to an expanding fluid,
while negative ones indicate contraction. The volume scalar can
also be used to define a representative lengthscale (a) along the flow
lines by means of ȧ/a = �/3. In cosmological studies, the afore-
mentioned lengthscale corresponds to the scalefactor of the uni-
verse. The antisymmetry of the vorticity tensor implies that we
can define a vorticity vector by means of ωa = εabcω

bc/2, with
εabc representing the alternating tensor of the Euclidean space.4 By
construction ωab = εabcω

c, ensuring that ωabω
b = 0. The vorticity

vector also determines the rotation axis of the matter, namely the
only direction that remains unaffected by the rotational motion (Ellis
1971). Finally, the shear and vorticity magnitudes are defined by
σ 2 = σabσ

ab/2 and ω2 = ωabω
ab/2 = ωaω

a , respectively.
Assuming that 	 is the Newtonian gravitational potential, we use

the velocity of the fluid to define the vector

Aa = v̇a + ∂a	, (3)

which describes the combined action of gravitational and inertial
forces. The vector A a corresponds precisely to the relativistic four-
acceleration and vanishes when the matter moves under inertial and
gravitational forces alone (Ellis 1971, 1990). The gravitational field
is determined through a Poisson-like equation of the form

∂2	 = 1

2
κρ − �, (4)

where ∂2 = ∂a∂a is the Laplacian operator, κ = 8πG represents
the gravitational constant, ρ is the density of the matter and we
have allowed for a non-zero cosmological constant � (in units of
inverse-time squared).

2 Round brackets in the indices denote symmetrization, squares indicate
antisymmetrization and angled ones define the symmetric and trace-free
part of second-rank tensors. Therefore, ∂〈bva〉 = ∂(bva) − (∂cvc/3)δab .
3 The relative velocity vector (ẋa), between two neighbouring flow lines, is
related to their connecting vector (xa – connecting the same two particles at
all times) via the transformation ẋa = xb∂bv

a (see Ellis 1971 for details).
4 By construction, the volume element (the Levi-Civita tensor) has εabc =
ε[abc], with ε123 = 1. Also, εabcε

dqp = 3!δ[a
dδb

qδc]
p , which ensures that

εabcε
dqc = 2!δ[a

dδb]
q , εabcε

dbc = 2δa
d and εabcε

abc = 6.
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2.2 Non-linear hydrodynamics

Using the convective derivative operator, decomposition (2) and
definition (3), the non-linear continuity equation and the Navier–
Stokes formula associated with a self-gravitating fluid assume the
covariant forms

ρ̇ = −�ρ and ρAa = −∂ap − ∂bπab, (5)

respectively (Ellis 1971). Note that p is the isotropic and πab is the
anisotropic pressure of the medium (with πab = π 〈ab〉). To close
the system, one requires the equations of state for the matter. These
usually take the simple barotropic form adopted in Section 2.3, or
the phenomenological shape of equation (22) in Section 2.4, though
in general they depend on additional thermodynamic variables. We
also need a set of non-linear formulae to describe the fluid kinemat-
ics. These comprise two sets of three propagation and constraint
equations, which (like their relativistic counterparts) are obtained
by applying the Newtonian analogues of the Ricci identities to the
velocity vector of the fluid, namely by means of

∂[t∂b]va = 0 and ∂[c∂b]va = 0. (6)

The former of the above leads to the propagation formulae. To be
precise, the gradient of equation (3) together with definition (1) and
decomposition (2) gives

(∂bva)· = −1

9
�2δab − 2

3
�(σab + ωab) − ∂b∂a	 + ∂bAa

− σcaσ
c
b + ωcaω

c
b − 2σc[aω

c
b].

(7)

This expression contains collective information about the kinemat-
ical behaviour of the fluid. We decode this information by isolating
the trace, the symmetric trace-free and the antisymmetric compo-
nents of (7).

We begin with the trace of equation (7), which by means of
(4) leads to the Newtonian version of the familiar Raychaudhuri
equation,

�̇ = −1

3
�2 − 1

2
κρ + ∂aAa − 2(σ 2 − ω2) + �, (8)

that determines the expansion (or contraction) rate of the fluid.
Comparing the above to its relativistic counterpart [e.g. see equa-
tion (1.3.3) in Tsagas et al. 2008], we note that only the density of
the matter contributes to the gravitational mass and also note the
absence of an AaAa-term in the right-hand side of (8).

In an analogous way, the symmetric and trace-free component of
(7) provides the evolution formula of the shear

σ̇ab = −2

3
�σab − Eab + ∂〈aAb〉 − σc〈aσ c

b〉 + ωc〈aωc
b〉. (9)

Here, Eab = ∂〈b∂a〉	 represents the tidal part of the gravitational
field and corresponds to the electric Weyl component of the rela-
tivistic treatment [compare the above to expression (1.3.4) in Tsagas
et al. 2008].5 The vorticity term, on the other hand, carries the dis-
torting effect of the centrifugal forces (Ellis 1971). Also note that,
in contrast with the relativistic analysis, there are no A〈aAb〉 and πab

terms in the right-hand side of (9).

5 The tidal field can be associated with a component of the gravitational
potential that does not directly relate to matter and satisfies the Laplace
equation (e.g. Barrow & Götz 1989). Also note that there is no Newto-
nian analogue to the magnetic Weyl tensor, which reflects the absence of
gravitational waves within the limits of Newton’s theory.

We close the set of the propagation formulae with the skew part of
(7). The latter governs the rotational behaviour of the fluid element,
either in terms of ωab,

ω̇ab = −2

3
�ωab + ∂[bAa] − 2σc[aω

c
b], (10)

or in terms of ωa

ω̇a = −2

3
�ωa − 1

2
curlAa + σabω

b, (11)

since ωab = εabcω
c by definition and curlva = εabc∂

bvc for any
vector va . Note that both of the above have the form of their rela-
tivistic counterparts [e.g. compare equation (11) to equation (1.3.5)
in Tsagas et al. 2008].

Expressions (8)–(11) monitor the non-linear evolution of the irre-
ducible kinematical quantities of a Newtonian self-gravitating fluid
in fully covariant terms. For a complete kinematical description,
we need to supplement this set by an equal number of constraints.
These come after contracting identity (6b) with the permutation
tensor of the space. Employing decomposition (2), the result reads

εcda∂
cσb

d + ∂bωa −
(
∂cωc

)
δab − 1

3
εabc∂

c� = 0. (12)

The trace of the above, combined with the total antisymmetry of
εabc, immediately leads to the familiar vorticity constraint

∂aωa = 0, (13)

guaranteeing that ωa is a solenoidal vector. On the other hand, taking
the symmetric and trace-free component of equation (12) we arrive
at

curlσab + ∂〈bωa〉 = 0, (14)

where curl Tab ≡ εcd〈a∂cTb〉d for every symmetric and trace-free
tensor of rank two. Finally, the antisymmetric part of (12) leads to

2

3
∂a� − ∂bσab + curlωa = 0 (15)

and provides a relation between the gradients of the three kinematic
variables. The reader is referred to equations (1.3.6)–(1.3.8) in
Tsagas et al. (2008) for a comparison between the Newtonian and
the relativistic kinematic constraints. Here, we simply note that in
relativity ωa is not generally a solenoidal vector. Further discus-
sion on Newtonian covariant hydrodynamics can be found in Ellis
(1971).

So far, our analysis applies to all situations where the fluid de-
scription is valid. Typical cosmological models, for example, have
� > 0 and ω, σ , p � 0. A non-rotating star, on the other hand,
is characterized by ω �= 0 and by �, σ � 0, while p ∝ ργ (with
γ = constant) is a commonly used equation of state for the mat-
ter. Variations of the latter are also used in galactic studies, where
observations indicate � � 0 and we can use Oort’s constants to
estimate the associated shear and vorticity.

2.3 Perfect fluids

When the gravitational field is specified and an equation of state for
the fluid has been introduced, expressions (5), (8)–(11) and (13)–
(15) provide the fully non-linear covariant equations that monitor
the hydrodynamic behaviour of a self-gravitating Newtonian fluid.
Here, we will consider the case of a barotropic perfect fluid with
p = p(ρ) and πab = 0. Under these conditions, the Navier–Stokes
equation reduces to

Aa = − c2
s

a
�a, (16)
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where c2
s ≡ dp/dρ is the square of the adiabatic sound speed and

�a = (a/ρ)∂aρ. The latter is a dimensionless quantity that de-
scribes spatial variations (inhomogeneities) in the density of the
fluid, as measured between two neighbouring flow lines (e.g. see
Ellis 1990). Assuming, for simplicity, that both the sound speed and
the scalefactor have zero spatial dependence, the above leads to

∂bAa = − c2
s

a2
�ab, (17)

with �ab = a∂b�a . This variable is also dimensionless and, in con-
trast with the relativistic case, has zero skew part (i.e. �[ab] = 0).
Thus, within the Newtonian framework, �ab can be used to describe
density perturbations (by means of the scalar � = �a

a = a∂a�a)
and shape distortions (via the symmetric and trace-free tensor
�〈ab〉 = a∂〈b�a〉) but no vortex-like (i.e. vector) inhomogeneities.
On using result (17), expressions (8)–(10) take the form

�̇ = −1

3
�2 − 1

2
κρ − c2

s

a2
� − 2(σ 2 − ω2) + �, (18)

σ̇ab = −2

3
�σab − Eab − c2

s

a2
�〈ab〉 − σc〈aσ c

b〉 + ωc〈aωc
b〉 (19)

and

ω̇ab = −2

3
�ωab − 2σc[aω

c
b], (20)

respectively. According to (18), overdensities (i.e. perturbations
with � > 0) tend to enhance the gravitational collapse of the fluid,
while underdensities support against it. In addition, following (19)
and (20), the barotropic fluid can act as a source of shear anisotropy
but does not generate vorticity. The same behaviour has also been
seen in the relativistic studies (e.g. see Tsagas et al. 2008). Here, the
main difference is that rotation remains unaffected by the fluid pres-
sure [compare expression (20) to equation (3.2.8) in Tsagas et al.
2008]. As a result of this, which is due to the zero curvature of the
Euclidean space, vorticity can never grow in expanding Newtonian
models with vanishing shear.6

Finally, we note that one may monitor the acceleration or decel-
eration of an expanding Newtonian (barotropic) fluid by recasting
equation (18) into the form

1

3
�2q = 1

2
κρ + c2

s

a2
� + 2(σ 2 − ω2) − �, (21)

where q = −aä/ȧ2 is the deceleration parameter. The above also
shows how ‘voids’, namely underdense regions with � < 0, tend to
accelerate the expansion by acting together with the vorticity and
the (positive) cosmological constant.

2.4 Imperfect fluids

One may look at the implications of fluid viscosity by considering an
imperfect medium with non-zero anisotropic pressure. Maintaining
the p = p(ρ) assumption of the previous section for simplicity, we
introduce the phenomenological expression

πab = −λσab, (22)

with λ = λ(ρ, p) ≥ 0 being the viscosity coefficient (e.g. see Ellis
1971). When the latter is a slowly varying function, the above

6 In general relativity, the rotational behaviour of the fluid also depends on its
pressure. In particular, vorticity grows when the (dimensionless) adiabatic
sound speed is greater than

√
2/3 (see Barrow 1977 and also Tsagas et al.

2008).

combines with constraint (15) to recast the momentum conservation
law [see equation (5b)] into

Aa = − c2
s

a
�a + λ

ρ

(
2

3a
Za + curlωa

)
, (23)

where Za = a∂a� describes inhomogeneities in the volume ex-
pansion/contraction. Thus, by exploiting the advantages of the co-
variant expressions [in particular by involving constraint (15)], we
were able to recast the viscosity term of (5b) into a kinematical one.
Proceeding as with the perfect fluid, we assume that both the sound
speed and the scalefactor depend solely on time. This allows the
direct comparison of the two cases and leads to

∂bAa = − c2
s

a2
�ab + 2λ

3a2ρ
(Zab − Za�b)

+ λ

ρ

(
∂bcurlωa − 1

a
�bcurlωa

)
, (24)

with Zab = a∂bZa . Substituting the trace, the symmetric trace-free
part and the skew component of the above into equations (8)–(10),
we arrive at

�̇ = −1

3
�2 − 1

2
κρ − c2

s

a2
� + 2λ

3a2ρ

[
Z −

(
Za + 3a

2
curlωa

)
�a

]

− 2(σ 2 − ω2) + �, (25)

σ̇ab = −2

3
�σab − Eab − c2

s

a2
�〈ab〉 + 2λ

3a2ρ

(
Z〈ab〉 − Z〈a�b〉

)
− λ

aρ

(
�〈acurlωb〉 − a∂〈acurlωb〉

)
− σc〈aσ c

b〉 + ωc〈aωc
b〉 (26)

and

ω̇ab = −2

3
�ωab − 2λ

3a2ρ

×
[
Z[a�b] − 3

2

(
a�[acurlωb] − a2∂[acurlωb]

) ]

− 2σc[aω
c
b], (27)

respectively. Not surprisingly, we find that viscosity can modify
every aspect of the model’s kinematics in a variety of ways. Perhaps
the most direct effect, relative to the barotropic-fluid case, is seen
in equation (27). The latter shows that viscosity, together with an
overall inhomogeneity, can act as a source of rotation (at the second
perturbative level).

2.5 Hydrodynamic flows as purely gravitational motions

Keplerian motions are central to mass measurements. The observa-
tional determination of the masses of various astrophysical systems
is usually based on the assumption of purely gravitational motions.
For example, the central mass concentration in various galaxies
is estimated by Doppler-shift measurements of radiative sources,
which are assumed to move along Keplerian trajectories (e.g. see
Kormendy & Richstone 1995). Nevertheless, there are known cases
where the non-gravitational forces are strong enough to affect these
trajectories and where a hydrodynamic description of the motion is
more appropriate (Holt, Neff & Urry 1992; Urry & Padovani 1995).
Then, one would like to know whether the standard measurements
have over- or underestimated the available amount of matter.

One way of addressing this question is by rewriting key hydro-
dynamic equations into a ‘Keplerian’ form and then examining the
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implications of such a transformation for the dynamics of the physi-
cal system under consideration. Following Kleidis & Spyrou (2000),
Spyrou & Tsagas (2004) and in absence of anisotropic pressure, we
may combine equations (3) and (5b) to

v̇a = −∂a	 − 1

ρ
∂ap. (28)

Setting V = 1/ρ as the specific volume, we introduce an equation of
state of the form E = E(p, V ), where E is the specific internal energy
of the fluid. We may also define the associated temperature T = T(p,
V ) and specific entropy S = S(p, V ) by (e.g. see Ellis 1971)

dE + p dV = T dS, (29)

where the right-hand side vanishes when adiabaticity holds. In the
case of purely isentropic motions (i.e. when S is spatially and tem-
porally constant), one can use the above expression to recast (28)
as

v̇a = −∂a	 − ∂a

(
E + p

ρ

)
, (30)

thus incorporating the internal properties of the fluid into Euler’s
equation. This means that isentropic hydrodynamic flows can be
seen as entirely gravitational motions under the new, effective po-
tential

	̃ = 	 + E + p

ρ
, (31)

which is shown to correspond to an effective mass density given by

∂2	̃ = 1

2
κρ̃. (32)

The ‘Keplerial’ density introduced above can be expressed in terms
of the wider fluid characteristics, like its internal energy and pres-
sure, through definition (31). In general, ρ̃ is different from its
hydrodynamic counterpart and their difference,

1

2
κ(ρ̃ − ρ) = ∂2

(
E + p

ρ

)
, (33)

depends on the aforementioned physical properties of the fluid.7

This result also offers a way of measuring the ‘error bars’ between
mass estimates based on purely gravitational motions, relative to
those using the more realistic hydrodynamic approximation. For
instance, if the ‘virtual’ density ρ̃ is smaller than the ‘actual’ one (ρ),
mass measurements using Keplerian motions will underestimate the
available amount of matter. Although the results generally depend
on the particulars of the physical system under consideration, there
seem to exist realistic astrophysical environments where ρ̃ < ρ (see
Kleidis & Spyrou 2000; Spyrou & Tsagas 2004; Spyrou 2005 for
further astrophysical discussion).

3 C OVA R I A N T M H D S

Covariant techniques were introduced to the study of electromag-
netic fields in Ehlers (1961), Ellis (1973) and more recently in
Tsagas & Barrow (1997, 1998) and Tsagas & Maartens (2000a)
(see also Barrow, Maartens & Tsagas 2007 for an up-to-date re-
view). All these studies are relativistic, however, and so far the
Newtonian version of 1 + 3 covariant electrodynamics and MHD
has been missing from the literature.

7 The effective mass density ρ̃ does not generally obey a continuity equa-
tion of the simple form (5a).

3.1 Maxwell’s equations

In a two-fluid plasma description, the charge carriers are the positive
ions and the electrons, which are treated as two coupled conducting
fluids. The matter density, the charge density and the current density
of the one-fluid description are

ρ = m+n+ + m−n−, q = e(n+ − n−) (34)

and

Ja = e
(
n+v+

a − n−v−
a

)
, (35)

respectively (e.g. see Giovannini 2004). In the above, e is the elec-
tron charge, m± are the ion and the electron masses, n± represent
their number densities and v±

a are the associated velocities. In the
case of global electric neutrality, we have n+ = n− and the centre
of mass of the ion–electron system has the ‘bulk’ velocity8

va = 1

m+ + m−

(
m+v+

a + m−v−
a

)
. (36)

Within the single fluid approach and at the limit of resistive MHD,
the displacement current (∂tEa) is negligible. Then, Maxwell’s equa-
tions reduce into a set of one propagation equation

∂tBa = −curlEa, (37)

and three constraints

curlBa = Ja, ∂aEa = 0, ∂aBa = 0, (38)

having adopted the Heaviside–Lorentz electromagnetic units. The
above, which respectively correspond to Faraday’s law, Ampère’s
law, Coulomb’s law and Gauss’ law, are supplemented by Ohm’s
law. For a fluid with non-zero electrical resistivity, the latter reads

Ja = ς
(
Ea + εabcv

bBc
)
, (39)

with ς representing the (scalar) electrical conductivity of the
medium. This form of Ohm’s law corresponds to the resistive MHD
approximation, which applies to fluids with small but finite electri-
cal resistivity. In general, equation (39) contains several additional
terms – like those representing the Hall and the Biermann-battery
effects [e.g. see expression (3.5.9) in Krall & Trivelpiece 1973].9

Solving (39) for the electric field vector, substituting the result
into equations (37), using decomposition (2), constraint (38a) and
involving the convective derivative operator, we obtain the covariant
form of the Newtonian magnetic induction equation

Ḃa = −2

3
�Ba + (σab + ωab)Bb + 1

ς
∂2Ba (40)

at the resistive MHD limit. Comparing the above to its relativistic
counterpart [see equation (3.2.4) in Barrow et al. 2007], we note that
the relative-motion terms (i.e. the first two terms in the right-hand
side of the two formulae) are identical. We also note the absence of
the acceleration terms from (38a) and (40) – compare the former to
(3.2.3) in Barrow et al. (2007). This absence reflects the fact that
Newtonian physics treat time and space as entirely separate entities.

8 See Contopoulos & Spyrou (1976) for a generalization to general relativity
and further discussion.
9 The potential implications of a non-conventional (anomalous) form of elec-
trical resistivity were discussed in Vlahos, Tsagas & Papadopoulos (2005).
Also, for a comparison with the fully relativistic counterpart of (39), the
reader is referred to Kandus & Tsagas (2008).

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 388, 187–196



192 N. K. Spyrou and C. G. Tsagas

Similarly, employing (39) together with Ampère’s law (see equa-
tion 38a), expression (38b) – Coulomb’s law – assumes the covariant
form

2Baωa = −vaJa, (41)

suggesting that the sum vaJa = vacurlBa acts as an effective charge
density relative to a rotating observer [when Baωa �= 0 – see also
equation (3.2.5) in Barrow et al. (2007)].

3.2 Magnetic evolution

Contracting the magnetic induction equation (see 40) along the field
vector leads to the non-linear evolution formula of the magnetic
pressure, namely to

(B2)· = −4

3
�B2 − 2σ ab�ab + 1

ς
∂2B2

− 2

ς

[(
∂〈bBa〉

)2 − (
∂[bBa]

)2
]
, (42)

where

�ab = −B〈aBb〉 = 1

3
B2δab − BaBb, (43)

by definition. The latter is a symmetric, trace-free tensor that
describes the magnetic anisotropic stresses and corresponds pre-
cisely to its relativistic counterpart. By definition, �ab = Mab −
(B2/6)δab, where Mab = (B2/2)δab − BaBb is the Maxwell ten-
sor (Parker 1979; Zeldovich, Ruzmaikin & Sokooff 1983; Mestel
1999). Thus, in agreement with the relativistic analysis (see sec-
tion 5.1 in Barrow et al. 2007), the B-field exerts an isotropic pres-
sure equal to pB = Ma

a/3 = B2/6 and has an anisotropic pres-
sure component given by �ab. We also note the quantities ∂〈bBa〉
and ∂[bBa] in the right-hand side of (42). These may be respectively
interpreted as the shear and the vorticity analogues of the B-field
[see equation (55) below] and are important in highly distorted and
turbulent magnetic configurations.

Definition (43) immediately ensures that �abBb = −(2B2/3)Ba .
This in turn means that the B-field is an eigenvector of the �ab-
tensor, with −2B2/3 being the associated eigenvalue. The negative
sign shows that the magnetic pressure in the direction of the field
lines is negative and reflects the tension properties of the latter (see
also Section 4.1). Projecting (43) orthogonal to the magnetic force-
lines, on the other hand, we find a positive eigenvalue equal to B2/3,
which verifies that the field exerts a positive pressure in that plane
(Tsagas & Maartens 2000b). In other words, every single field line
acts like an elastic rubber band under tension, while neighbouring
lines tend to push each other apart (Parker 1979; Zeldovich et al.
1983; Mestel 1999).

Finally, following (43), it becomes immediately clear that the
magnetic induction equation – together with expression (42) – also
monitors the time evolution of the anisotropic pressure of the field.
On the other hand, the divergence of (43) provides the associated
constraint, namely

∂b�ab = εabcB
bcurlBc − 1

6
∂aB

2. (44)

4 R ESISTIVE MHDS

The resistive (or real) MHD scheme is believed to provide a good ap-
proximation to a variety of ‘typical’ physical environments, for ex-
ample, when the Larmor frequency and bulk velocity of the plasma

are small, or when the dimensions of the system under study are
large.

4.1 The Lorentz force

In covariant terms, the evolution of a non-relativistic magnetized
plasma of finite electrical resistivity is monitored by the non-linear
set

ρ̇ = −�ρ, (45)

ρAa = −∂ap − ∂bπab − εabcB
bcurlBc, (46)

∂2	 = 1

2
κρ, (47)

consisting of the continuity equation, the Navier–Stokes equa-
tion and Poisson’s formula, respectively. These are supplemented
by Maxwell’s equations, which applied to an electrically resistive
medium and written in covariant form read

Ḃa = −2

3
�Ba + (σab + ωab) Bb + 1

ς
∂2Ba, (48)

curlBa = Ja, (49)

∂aBa = 0 (50)

and

2Baωa = −vaJa = −vacurlBa. (51)

The momentum conservation is reflected in (46), which is the
Navier–Stokes equation generalized to a (globally neutral) mag-
netized fluid. This expression can be obtained directly from its
hydrodynamic counterpart (see 5b) by implementing the aforemen-
tioned fluid description of the B-field. To be precise, equation (46)
emerges after replacing p with p + B2/6 and πab with πab + �ab in
the right-hand side of (5b), while using constraint (44) at the same
time. Note that there is no magnetic contribution to the total inertial
mass in the left-hand side of (46), or to the total gravitational mass
in the right-hand side of equation (55) (see Section 4.2 below). This
is a significant change, with respect to the relativistic case [compare
to expressions (5.3.3) and (5.5.1) of Barrow et al. 2007], which im-
plies that there is no Newtonian analogue to the relativistic energy
density of the B-field. Finally, following (46), we note that the sum
AaBa has no magnetic dependence. This ensures that the magnetic
field has no effect along its own direction.

The set (45)–(51) is supplemented by the kinematic propagation
and constraint equations (8)–(15), once the latter have been appro-
priately adapted to our electrically resistive magnetized environ-
ment. Within the limits of the Newtonian theory, the above-named
formulae contain no explicit magnetic terms. This means that the
kinematic effects of the B-field propagate solely through the fluid
acceleration and specifically via the Lorentz-force term in the right-
hand side of equation (46).10 For a globally neutral medium, the
Lorentz force depends exclusively on the B-field and splits into two
stresses according to

εabcB
bcurlBc = 1

2
∂aB

2 − Bb∂bBa, (52)

10 The lack of explicit magnetic terms in the propagation formulae (8)–(11)
and the absence of acceleration terms in equations (13)–(15) represents a
considerable change relative to the relativistic case (see Barrow et al. 2007
for details).
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where the first term in the right-hand side is due to the isotropic
pressure of the field (see Section 3.2) and the second carries the
effects of the magnetic tension. The tension stress also reflects the
elasticity of the field lines and their tendency to remain straight
(Parker 1979; Zeldovich et al. 1983; Mestel 1999). When these two
stresses balance each other out, the B-field reaches equilibrium.

4.2 Non-linear kinematics

Proceeding as in Section 2.3, we ignore the anisotropic pressure of
the fluid and assume a barotropic medium by setting p = p(ρ). Then,
the MHD version of the Navier–Stokes equation [see equation (46)]
takes the form

Aa = − c2
s

a
�a − c2

a

2a
Ba + 1

ρ
Bb∂bBa, (53)

with c2
a = B2/ρ and Ba = (a/B2)∂aB

2. The former is the Alfvén
speed, which determines the propagation of MHD disturbances and
also provides a measure of the relative strength of the B-field. The
latter is a dimensionless variable that describes spatial variations in
the (isotropic) magnetic pressure. Note the last term in the right-
hand side of equation (53), which carries the effects of the magnetic
tension [see decomposition (52) above]. When the sound speed,
the Alfvén speed and the scalefactor have a spatially homogeneous
distribution, the gradient of the above leads to

∂bAa = − c2
s

a2
�ab − c2

a

2a2
Bab − 1

aρ
�bB

c∂cBa

+ 1

ρ
∂bB

c∂cBa + 1

ρ
Bc∂c∂bBa,

(54)

where Bab = a∂bBa . The overall magnetic effect is rather involved
and propagates via the last four terms. Of these, the first is triggered
by the isotropic pressure of the field and the rest are due to the
tension properties of the magnetic forcelines.

Substituting the trace of (54) into equation (8), we obtain the
non-linear form of Raychauduri’s formula for a magnetized, self-
gravitating Newtonian fluid of zero total charge. In particular, using
constraint (38c), we arrive at

�̇ = −1

3
�2 − 1

2
κρ − c2

s

a2
� − c2

a

2a2
B − 1

aρ
�aBb∂bBa

− 2
(
σ 2 − σ 2

B

) + 2
(
ω2 − ω2

B

)
, (55)

where B = Ba
a, σ

2
B = ∂〈bBa〉∂〈bBa〉/2ρ and ω2

B = ∂[bBa] ∂[bBa]/2ρ.
The former describes scalar variations in the magnetic pressure,
while the last two can be interpreted as the magnetic analogues of
the shear and the vorticity, respectively. According to the above,
the compression of the field lines (which corresponds to an in-
crease in the magnetic pressure and B > 0) assists the gravitational
pull of the matter. The dilution of the magnetic forcelines, on the
other hand, acts against contraction. We also note that the effect
of the magnetic shear and vorticity opposes that of their kinematic
counterparts (see also Papadopoulos & Esposito 1982). The reason
behind this counterintuitive behaviour is the magnetic tension. Both
σB and ωB are triggered by the elasticity of the magnetic forcelines
and therefore react to any agent that distorts them. The magnetic
vorticity, in particular, is the response of the field’s tension to the
twisting of its forcelines. The resulting stress slows the rotation
down and this effect is commonly referred to as ‘magnetic brak-
ing’. Analogous behaviour has also been observed in relativistic
studies (see Tsagas 2001, 2006; Barrow & Tsagas 2008 for more
details and further discussion). The key difference here, as a result

of the Euclidean nature of the Newtonian space, is the absence of
the general relativistic magnetocurvature stresses.

Substituting the symmetric and trace-free component of the aux-
iliary expression (54) into the right-hand side of (9) leads to

σ̇ab = −2

3
�σab − Eab − c2

s

a2
�〈ab〉 − c2

a

2a2
B〈ab〉 + 1

ρ
Bc∂c∂〈bBa〉

+ 1

ρ
∂〈bBc∂cBa〉 − 1

aρ
Bc�〈a∂cBb〉

− σc〈aσ c
b〉 + ωc〈aωc

b〉. (56)

The above shows how anisotropies in the distribution of the mag-
netic pressure and in that of the field gradients affect the evolution
of the kinematic shear. In particular, despite the lack of a direct con-
tribution from the magnetic anisotropic pressure, the B-field acts as
a shear source in a variety of ways.11 Note that of the four magnetic
source terms in equation (56), the first is due to the field’s pressure
and the last three are the result of its tension.

Finally, the skew part of decomposition (54), together with the
(strictly Newtonian) results B[ab] = 0 = �[ab], transforms equa-
tion (11) into

ω̇a = −2

3
�ωa − 1

2ρ
Bb∂bcurlBa − 1

2ρ
εabc∂

bBd∂dB
c

+ 1

2aρ
εabcBd�

b∂dBc + σabω
b. (57)

This expression reveals the role of the B-field as a source of rotation,
either on its own or through its coupling to the density gradients.
It should also be noted that there are no effects due to the isotropic
magnetic pressure in equation (57), with all the B-terms coming
from the field’s tension. Following (56) and (57), even if the fluid
is originally shear-free and non-rotating, it will not remain so once
a magnetic field is introduced.

We close this section by noting that, according to equations (13)–
(15), the kinematic constraints contain no explicit magnetic terms
and therefore are only indirectly affected by the field’s presence.
We should also underline the benefits from using the covariant ap-
proach. These are multiple because the formalism streamlines the
equations, while maintaining maximum detail and physical trans-
parency. Finally, we note that the expressions given in Section 4
can be used to study the Newtonian evolution of any electrically
resistive and globally neutral fluid in the presence of a magnetic
field. In addition, the formalism developed so far can be extended
to study the behaviour of inhomogeneities, both at the linear and at
the non-linear level.

4.3 Hydrodynamic reduction of magnetized flows

Ideal fluids have zero anisotropic pressure by definition. When,
in addition, the tension component of the magnetic Lorentz force
is also zero [i.e. for Bb∂bBa = 0; see decomposition (52)], the
generalized Navier–Stokes equation simplifies to

ρAa = −∂ap − 1

2
∂aB

2. (58)

Realistically speaking, the above is only an approximation and holds
when the Lorentz force is dominated by the (positive) pressure of the
B-field. In such an environment, the non-gravitational acceleration

11 Recall that in relativistic studies the magnetic �ab-tensor is an explicit
source of shear anisotropies (Barrow et al. 2007).
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of the fluid (i.e. the vector Aa) comes purely from a potential. Then,
the MHD motion reduces to a simple hydrodynamic flow with

ρAa = −∂aP , (59)

where the scalar P = p + B2/2 acts as an effective hydrodynamic
pressure (see equation 53). This new motion is monitored by the
formulae of Section 2.2, after replacing expression (5b) with (59)
and the pressure of the original fluid with the above given effective
pressure P. One can also go a step further and use the transforma-
tions of Section 2.5 to represent the MHD flow of (58), (59) as a
‘purely gravitational’ motion. This time the effective potential will
also depend on the magnetic pressure.

5 ID E A L M H D S

In most astrophysical and cosmological studies, magnetic fields are
treated within the limits of the ideal MHD approximation. The latter
applies to highly conductive media with essentially zero electrical
resistivity. Although overly idealized and simplistic, the perfect
MHD scheme still seems to provide the correct description in a
variety of studies.

5.1 Maxwell’s equations

When dealing with a perfectly conductive medium, namely at the
ς → ∞ limit, the Ohmic current in equation (39) vanishes (i.e.
Ja/ς → 0) and the associated electric field is given by the simple
expression

Ea = −εabcv
bBc. (60)

In these environments, the non-linear equations monitoring a glob-
ally neutral, self-gravitating Newtonian fluid in the presence of a
magnetic field are

ρ̇ = −�ρ, (61)

ρAa = −∂ap − ∂bπab − εabcB
bcurlBc, (62)

∂2	 = 1

2
κρ, (63)

Ḃa = −2

3
�Ba + (σab + ωab) Bb, (64)

curlBa = Ja, (65)

∂aBa = 0, (66)

2Baωa = −vaJa = −vacurlBa. (67)

Relative to the resistive-MHD case of Section 4, we note the ab-
sence of a diffusion term in the right-hand side of the induction
equation [compare equations (40), (48) to expression (64) above].12

This guarantees that the magnetic field lines remain frozen-in with
the matter. In particular, (64) ensures that Xa = a3Ba is a rela-
tive position vector connecting the same particles at all times (i.e.
Ẋa = X b∂bva ; see footnote 3 in Section 2.1 and also Ellis 1990;
Barrow et al. 2007).

12 The kinematics of a perfectly conductive ideal fluid are still monitored by
the ‘resistive’ formulae of Section 4.2.

5.2 Magnetic evolution

Relation (64) also shows that, in the absence of shear anisotropies,
the magnetic strength either dilutes with the expansion or increases
with the contraction of the fluid. Then, recalling that �/3 = ȧ/a,
the magnetic induction equation reduces to

Ḃa = −2

(
ȧ

a

)
Ba. (68)

An immediate consequence is that the magnetic flux, here repre-
sented by the quantity a2Ba , remains conserved in time. Moreover,
the ideal-MHD counterpart of equation (42) reads

(B2)· = −4

3
�B2 − 2σ ab�ab, (69)

with �ab given in (43). Therefore, for zero shear anisotropy, we re-
cover the familiar from the relativistic studies radiation-like evolu-
tion (i.e. B2 ∝ a−4) of the magnetic pressure. The presence of shear,
on the other hand, will generally modify the aforementioned ‘adia-
batic’ pattern. This can happen during the realistic (i.e. anisotropic)
collapse of a magnetized proto-galactic cloud and lead to the am-
plification of the embedded B-field beyond the limits of the simple
spherical-collapse models (Dolag et al. 1999; Bruni, Maartens &
Tsagas 2003).

As mentioned in Section 3.2, the magnetic induction equa-
tion monitors the time evolution of both the isotropic and the
anisotropic pressure of the B-field. At the ideal-MHD limit, the
time derivative of (43) combines with expressions (68) and (69) to
give

�̇ab = −4

3
��ab + 2�c〈aσ c

b〉 − 2�c〈aωa
b〉 − 2

3
B2σab, (70)

while the associated constraint is still given by (44). In the ab-
sence of shear and vorticity, the above leads to �ab ∝ a−4, in
line with the evolution of its isotropic counterpart. Thus, when the
anisotropy is small, the B-field has a radiation-like evolution to first
approximation.

Turning to the kinematics of perfectly conducting media, we note
that the magnetic effects on a (globally neutral) fluid propagate via
the Lorentz-force term in the right-hand side of the generalized
Navier–Stokes formula [see equation (62)]. The form of the latter
is independent of the electrical resistivity of the matter, since it
contains no related terms. This means that relations (55)–(57), to-
gether with constraints (13)–(15), also govern the kinematics of an
ideal-MHD medium.13 When an equation of the state for the matter
is introduced, these expressions monitor the non-linear evolution of
the magnetized medium completely and in a fully covariant manner.

We finally note that, when the fluid is perfect, the magnetic field
becomes the sole source of anisotropy. The magnetically induced
effective viscosity can be related to that of the shear in a way that
closely resembles the phenomenological equation of state intro-
duced in Section 2.4 [see equation (22)]. Thus, assuming that the
B-field is a shear eigenvector, we may set σabBb = (2μ/3)Ba , where
2μ/3 is the associated eigenvalue. Also, following definition (43),
we find that �abBb = −(2B2/3)Ba and subsequently arrive at

�ab = −λσab, (71)

with λ = B2/μ acting as an effective coefficient of magnetic vis-
cosity (Tsagas & Maartens 2000b).

13 Directly, the electrical resistivity of the medium affects only the evolution
of the embedded B-field [compare equations (48) and (62)]. The latter then
carries these effects to the kinematics and the dynamics of the magnetized
medium.
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6 D ISCUSSION

Newtonian theory offers a very good approximation to general rel-
ativity in weak-gravity environments and also on scales well inside
the Hubble radius. The covariant approach to Newtonian hydro-
dynamics is a Lagrangian description based on a relative-motion
treatment that exploits the irreducible kinematical quantities of the
motion. Although the formalism was originally applied within the
framework of Newton’s theory, it has since been used primarily in
relativistic studies. On the other hand, while the 1 + 3-covariant
techniques have been employed for the study of relativistic electro-
magnetic fields, so far a Newtonian version of that work has been
missing.

The present paper reviews and extends the existing work on
Newtonian covariant hydrodynamics on the one hand, while on the
other it applies the covariant techniques to MHD studies. Exploit-
ing the advantages of the relative-motion treatment, we supplement
the standard hydrodynamic formulae with a set of three propaga-
tion and three constraint equations that monitor the evolution of the
irreducible kinematical variables. The latter, namely the volume ex-
pansion/contraction, the shear and the vorticity, describe the relative
motion of neighbouring flow lines. The aforementioned formulae
are obtained in a manner analogous to that of their relativistic coun-
terparts and this facilitates the direct comparison of the two sets. In
fact, the close analogy between the Newtonian and the relativistic
equations is maintained throughout the paper and this allows the
unambiguous identification of their differences.

The aforementioned formulae are applied to a perfect, as well
as an imperfect (viscous), medium looking for differences in their
kinematical behaviour. Not surprisingly, the extra degree of freedom
that viscosity introduces means that the kinematics of a viscous
fluid are considerably more involved. Following our analysis, the
key contribution of viscosity is perhaps through its role as a source
of rotation. Focusing on isentropic fluids, we also discuss how
hydrodynamic flows can be represented as ‘purely gravitational’
motions due to a new (effective) potential. The latter incorporates
additional characteristics of the fluid, like its internal energy and
pressure, and corresponds to a new (effective) mass density. The
relation between the ‘actual’ (the hydrodynamic) and the ‘virtual’
(the effective) mass density has been used to estimate the accuracy
of astrophysical mass measurements based on the assumption of
purely gravitational (Keplerian) motions.

Assuming an imperfect MHD fluid of zero total charge, we de-
rive the covariant version of Maxwell’s equations within the limits
of Newtonian gravity. In an environment of small but finite elec-
trical resistivity, we monitor the evolution of the magnetic field
completely. This means providing the non-linear propagation and
constraint equations for both the isotropic and the anisotropic mag-
netic pressure. The compactness of the covariant formalism also
allows us to identify the impact of the B-field on the kinematics
of the fluid in detail. In practice, this means isolating the effects
due to the ordinary (the positive) magnetic pressure, from those
coming from the tension of its forcelines. The former affect the
volume evolution and also the shape of a given fluid element, but
not its rotational behaviour. The impact of the magnetic tension,
on the other hand, is more widespread and sometimes counterin-
tuitive. Thus, the elastic properties of the field lines are shown to
act as sources of rotation, either on their own or through their cou-
pling to density inhomogeneities. In an analogous way, magnetism
is also found to trigger shear distortions. Moreover, when looking
into the implications of the B-field for the volume evolution of the
fluid, we identify magnetic analogues of the shear and the vorticity.

Both carry the tension properties of the field and oppose the effects
of their kinematic counterparts. The ‘magnetic vorticity’ term, in
particular, tends to slow the rotation down and leads to what is
commonly referred to as magnetic braking. Finally, we apply our
analysis to the limit of ideal MHDs and also discuss how certain
MHD flows can be reduced to simple hydrodynamic ones.

The formalism developed here can be applied to a variety of as-
trophysical and cosmological environments, where the Newtonian
theory is a good approximation. This includes non-relativistic as-
trophysical MHD and galaxy formation studies. In the latter case,
for example, one could use the linearized version of our equations
to follow the linear regime of a magnetized protogalactic cloud
(with size well below the horizon scale). Similarly, the full expres-
sions can be employed to monitor the non-linear evolution of the
protogalaxy, once the latter has decoupled from the background
expansion and started collapsing. More specifically, our equations
will enable one to look for effects outside the limits of the ideal
MHD. The latter are expected to play a role during the non-linear
regime of galaxy formation (at least locally). Applications of this
type will be the subject of future work.
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