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Abstract
We show using covariant techniques that the Einstein static universe containing
a perfect fluid is always neutrally stable against small inhomogeneous vector
and tensor perturbations and neutrally stable against adiabatic scalar density
inhomogeneities so long as c2

s > 1
5 , and unstable otherwise. We also show that

the stability is not significantly changed by the presence of a self-interacting
scalar field source, but we find that spatially homogeneous Bianchi type IX
modes destabilize an Einstein static universe. The implications of these results
for the initial state of the universe and its pre-inflationary evolution are also
discussed.

PACS numbers: 98.80.Cq, 98.80.Bp, 98.80.Jk

1. Introduction

The possibility that the universe might have started out in an asymptotically Einstein static state
has recently been considered in [1], thus reviving the Eddington–Lemaı̂tre cosmology, but this
time within the inflationary universe context. It is therefore useful to investigate stability of the
family of Einstein static universes. In 1930, Eddington [2] showed instability against spatially
homogeneous and isotropic perturbations, and since then the Einstein static model has been
widely considered to be unstable to gravitational collapse or expansion. Nevertheless, the
later work of Harrison and Gibbons on the entropy and the stability of this universe reveals
that the issue is not as clear-cut as Newtonian intuition suggests.

In 1967, Harrison [3] showed that all physical inhomogeneous modes are oscillatory in
a radiation-filled Einstein static model. Later, Gibbons [4] showed stability of a fluid-filled
Einstein static model against conformal metric perturbations, provided that the sound speed
satisfies c2

s ≡ dp/dρ > 1
5 .

The compactness of the Einstein static universe, with an associated maximum wavelength,
is at the root of this ‘non-Newtonian’ stability: the Jean’s length is a significant fraction of the
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maximum scale, and the maximum scale itself is greater than the largest physical wavelength.
Here we generalize Gibbons’ results to include general scalar, vector, and tensor perturbations
and a self-interacting scalar field. We also show that the Einstein static model is unstable to
spatially homogeneous gravitational-wave perturbations within the Bianchi type IX class of
spatially homogeneous universes.

Consider a Friedmann universe containing a scalar field φwith energy density and pressure
given by

ρφ = 1
2 φ̇2 + V (φ), pφ = 1

2 φ̇2 − V (φ),

and a perfect fluid with energy density ρ and pressure p = wρ, where − 1
3 < w � 1. The

cosmological constant � is absorbed into the potential V . The fluid has a barotropic equation
of state p = p(ρ), with sound speed given by c2

s = dp/dρ. The total equation of state is
wt = pt/ρt = (p + pφ)/(ρ + ρφ).

Assuming no interactions between fluid and field, they separately obey the energy
conservation and Klein–Gordon equations,

ρ̇ + 3(1 + w)Hρ = 0, (1)

φ̈ + 3Hφ̇ + V ′(φ) = 0. (2)

The Raychaudhuri field equation

ä

a
= −8πG

3

[
1

2
(1 + 3w)ρ + φ̇2 − V (φ)

]
, (3)

has the Friedmann equation as a first integral,

H 2 = 8πG

3

[
ρ +

1

2
φ̇2 + V (φ)

]
− K

a2
, (4)

where K = 0,±1, and together they imply

Ḣ = −4πG[φ̇2 + (1 + w)ρ] +
K

a2
. (5)

2. The Einstein static universe

The Einstein static universe is characterized by K = 1, ȧ = ä = 0. It is usually viewed as a
fluid model with a cosmological constant that is given a priori as a fixed universal constant,
and this is the view taken in previous stability investigations [2–4]. However, in the context
of inflationary cosmology, where the Einstein static model may be seen as an initial state, we
require a scalar field φ as well as a fluid, and � is not an a priori constant but determined
by the vacuum energy of the scalar field. The vacuum energy is determined in turn by the
potential V (φ) of the scalar field, which is given by some physical model. An initial Einstein
static state of the universe arises if the field starts out in an equilibrium position:

V ′(φ0) = 0, � = 8πGV (φ0). (6)

We will first discuss the simple case where V is trivial, i.e., a flat potential. A general
Einstein static model has ρ̇ = 0 = V ′ = φ̈ by equations (1)–(5), and satisfies

1

2
(1 + 3w)ρ0 + φ̇2

0 = V0, (7)

(1 + w)ρ0 + φ̇2
0 = 1

4πGa2
0

. (8)
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If the field kinetic energy vanishes, that is if φ̇0 = 0, then by equation (8), (1 + w)ρ0 > 0, so
that there must be fluid in order to keep the universe static; but if the static universe has only
a scalar field, that is if ρ0 = 0, then the field must have nonzero (but constant) kinetic energy
[1, 5]. Qualitatively, this means that there must be effective total kinetic energy, i.e. ρt +pt > 0,
in order to balance the curvature energy a−2 in the absence of expansion or contraction, as
shown by equation (5).

Equations (7) and (8) imply

wt = −1

3
, (9)

wφ = −1

3

[
V0 + (1 + 3w)ρ0/2

V0 − (1 + 3w)ρ0/6

]
. (10)

It follows that wφ � − 1
3 since w > − 1

3 and ρ0 � 0. In other words, the presence of matter
with (non-inflationary) pressure drives the equation of state of the scalar field below − 1

3 . If
the field has no kinetic energy, then by equations (7) and (8), its equation of state is that of a
cosmological constant,

φ̇0 = 0 ⇒ wφ = −1. (11)

If there is no fluid (ρ0 = 0), then the field has maximal kinetic energy,

ρ0 = 0 ⇒ wφ = − 1
3 = wt. (12)

In this case, the field rolls at constant speed along a flat potential, V (φ) = V0. Dynamically,
this pure scalar field case is equivalent to the case of w = 1 pure fluid with cosmological
constant. This can be seen as follows: equating the radii a0 of the pure-field and fluid-plus-
� cases, using equation (8), implies V0 = (1 + w)ρ0, by equation (7). This then leads to
wφ = −(3 + 5w)/(5 + 3w), by equation (10). However, we know that wφ = −1 for the
fluid-plus-� case, and equating the two forms of wφ leads to w = 1.

Thus there is a simple one-component type of Einstein static model, which may be realized
by perfect fluid universes with cosmological constant (the pure scalar field case is equivalent to
the w = 1 fluid model). This is the case considered by Eddington, Harrison and Gibbons. The
general case, of most relevance to cosmology, involves a scalar field with nontrivial potential
V (φ), so that the Einstein static model is an initial state, corresponding to an equilibrium
position (V ′

0 = 0). This general case is a two-component model since, in addition to the scalar
field, a fluid is necessary to provide kinetic energy and keep the initial model static.

3. Inhomogeneous perturbations of the fluid model

We consider first the effect of inhomogeneous density perturbations on the simple one-
component fluid models. Density perturbations of a general Friedmann universe are described
in the 1 + 3-covariant gauge-invariant approach by � = a2 D2ρ/ρ, where D2 is the covariant
spatial Laplacian. The evolution of � is given by [6]

�̈ +
(
2 − 6w + 3c2

s

)
H�̇ +

[
12

(
w − c2

s

) K

a2

+ 4πG
(
3w2 + 6c2

s − 8w − 1
)
ρ +

(
3c2

s − 5w
)
�

]
�

− c2
s D2� − w

(
D2 + 3

K

a2

)
E = 0, (13)
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where E is the entropy perturbation, defined for a one-component source by

pE = a2D2p − ρc2
s �. (14)

For a simple (one-component perfect-fluid) Einstein static background model, E = 0 and
equation (13) reduces to

�̈k = 4πG(1 + w)
[
1 + (3 − k2)c2

s

]
ρ0�k, (15)

where we have decomposed into Fourier modes with comoving index k (so that D2 → −k2/a2
0).

It follows that �k is oscillating and non-growing, i.e. the Einstein static universe is stable
against gravitational collapse, if and only if

(k2 − 3)c2
s > 1. (16)

In spatially closed universes the spectrum of modes is discrete, k2 = n(n + 2), where the
comoving wavenumber n takes the values n = 1, 2, 3, . . . in order that the harmonics be
single-valued on the sphere [3, 7]. Formally, n = 0 gives a spatially homogeneous mode
(k = 0), corresponding to a change in the background, and the violation of the stability
condition in equation (16) is consistent with the known result [2] that the Einstein static
models collapse or expand under such perturbations. This follows from the Raychaudhuri
equation (3).

For the first inhomogeneous mode (n = 1), the stability condition is also violated, so
that the universe is unstable on the corresponding scale if there is initial data satisfying the
constraint equations. However this is a gauge mode which is ruled out by the constraint
equations (G0i = 8πGT0i). This mode reflects a freedom to change the 4-velocity of
fundamental observers. (For multiple fluids with different velocities, one can in principle
have isocurvature modes with n = 1 that are not forced to zero by the Einstein constraint
equations.) The physical modes thus have n � 2. Stability of all these modes is guaranteed if

c2
s > 1

5 . (17)

This condition was also found by Gibbons [4] in the restricted case of conformal metric
perturbations; we have generalized the result to arbitrary adiabatic density perturbations.
Harrison [3] demonstrated stability for a radiation-filled model and instability of the dust-
filled model, which are included in the above result.

Thus an Einstein static universe with a fluid that satisfies equation (17) (and with no scalar
field), is neutrally stable against adiabatic density perturbations of the fluid for all allowed
inhomogeneous modes. The case w = 1 covers the pure scalar field (no accompanying
fluid) models. When c2

s > 0 the stability of the model is guaranteed by equation (16) for
all but a finite number of modes. The universe becomes increasingly unstable as the fluid
pressure drops. Clearly, a dust Einstein static universe

(
c2

s = 0
)

is always unstable. In that
case, equation (15) reads �̈k = 4πGρ0�k, implying exponential growth of �k (the Jeans
instability, see [3]).

The physical explanation of this rather unexpected stability lies in the Jeans length
associated with the model [4]. Although there are always unstable modes (i.e.,with wavelength
above the Jeans scale) in a flat space, in a closed universe there is an upper limit on wavelength.
It turns out that, for sufficiently large speed of sound, all physical wavelengths fall below the
Jeans length. By equation (8), the maximum wavelength 2πa0 depends on the equation of
state and is given by

λmax =
√

π

Gρ0(1 + w)
. (18)
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The Jeans length is 2πa0/nj, where �̈kj = 0 and k2
j = nj(nj + 2). Hence, by equation (15),

we have

λj =
(

cs√
4c2

s + 1 − cs

)
λmax. (19)

Stability means λ < λj, which leads to equation (17). For dust, λj = 0 and all the modes are
clearly unstable. For radiation, λj = 0.61λmax, and for a stiff fluid λj = 0.81λmax. In both of
these cases the Jeans length comprises a considerable portion of the size of the universe, and
is greater than all allowed wavelengths. This would also place important restrictions on the
evolution of nonlinear density inhomogeneities by shock damping or black-hole formation.

We also note that the stability condition entails neutral stability; the oscillations in �

are not damped by expansion, since the background is static. In the cosmological context,
where an initial Einstein static state begins to expand under a homogeneous perturbation, the
expansion will damp the inhomogeneous perturbations. However, the Einstein static will not
be an attractor; instead, the attractor will be de Sitter spacetime.

Vector perturbations of a fluid are governed by the comoving dimensionless vorticity
�a = aωa , whose modes satisfy the propagation equation

�̇k = − (
1 − 3c2

s

)
H�k. (20)

For a fluid Einstein static background, this reduces to

�̇k = 0, (21)

so that any initial vector perturbations remain frozen. Thus there is neutral stability against
vector perturbations for all equations of state on all scales.

Gravitational-wave perturbations of a perfect fluid may be described in the covariant
approach [8] by the comoving dimensionless transverse-traceless shear 	ab = aσab, whose
modes satisfy

	̈k + 3H	̇k +

[
k2

a2
+ 2

K

a2
− 8πG

3
(1 + 3w)ρ +

2

3
�

]
	k = 0. (22)

For the Einstein static background, this becomes

	̈k + 4πGρ0(k
2 + 2)(1 + w)	k = 0, (23)

so that there is neutral stability against tensor perturbations for all equations of state on all
scales. However this analysis does not cover spatially homogeneous modes. It turns out that
there are various unstable spatially homogeneous anisotropic modes, for example a Bianchi
type IX mode which we discuss below. The associated anisotropies can die away in the
case where the instability results in expansion. If this is the case, despite the extra spatially
homogeneous unstable modes, the expanding inflationary universe will be an attractor.

In summary, for the simplest models (one-component perturbations), we find neutral
stability on all physical inhomogeneous scales against adiabatic density perturbations if c2

s > 1
5 ,

and against vector and tensor perturbations for any c2
s and w, thus generalizing previous results.

4. Scalar-field perturbations

We turn now to the case of a self-interacting scalar field, i.e., where the scalar field is governed
by a non-flat potential V (φ), with initial Einstein static state at φ = φ0, i.e., V ′

0 = 0 = φ̇0.
This is the general dynamical problem: the stability analysis of the Einstein static universe
as an initial equilibrium position within a physically motivated (non-flat) potential. (Some
realizations of this scenario are discussed in [1].) Since we are interested only in the behaviour
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close to the Einstein static solution,we can treat H and V ′ as small in the perturbation equations.
The lowest-order solution for density perturbations, �

(0)
k , thus corresponds to H = 0 = V ′,

and is given by the fluid perturbation solution, equation (15),

�
(0)
k (t) = Ak cos ω0t + Bk sin ω0t, (24)

ω2
0 = 4πG(1 + w)ρ0

[
(k2 − 3)c2

s − 1
]
, (25)

with Ak and Bk constants for each mode. The next order contains contributions from the scalar
field perturbations,

�k = �
(0)

k + �
(1)

k + · · · , �
(1)

k = �φk, (26)

during the time when the background is close to the Einstein static equilibrium position.
The entropy term in equation (13) has no intrinsic fluid contribution since we assume the

fluid is adiabatic. A scalar field generically has intrinsic entropy perturbations, which follow
from equation (14) as [9]

Eφ = 1 − c2
φ

wφ

�φ. (27)

(See [10] for the corresponding expression in the metric-based perturbation formalism.) These
entropy perturbations have a stabilizing effect on density perturbations of the scalar field: the
entropy term in equation (13) cancels the preceding Laplacian term −c2

φ D2�φ , which would
produce instability when c2

φ < 0; what remains is the term −D2�φ , which contributes to
stability.

For an initial Einstein static state, the entropy contribution from the scalar field to lowest
order is

[wφEφ](1)
k = 2�

(1)
k , (28)

where we used
[
c2
φ

](0) = −1. There is also a relative entropy contribution, arising from the
relative velocity between the field and the fluid. We expect this contribution to be negligible.

We now expand all the dynamical quantities in equation (13) to incorporate the lowest
order effect of the self-interacting scalar field. In particular, a = a0 + a(1) and ρ = ρ0 + ρ(1),
where ρ(1) = 1

2 φ̇2
(1) + V(1), and similarly for the pressure. Then w → w + w(1), where

w(1) = p(1) − wρ(1)

ρ
, (29)

and c2
s → c2

s + c2
(1), where c2

(1) is determined by the form of the potential V (φ) near φ0. It also
follows from the background equations that

H 2
(1) = 8πG

3

[
1

2
φ̇2

(1) + V(1)

]
+

2

a3
0

a(1), (30)

φ̈(1) = −V ′
(1). (31)

Using these results, equation (13) gives the evolution equation for the contribution from scalar
field perturbations:

�̈
(1)
k + ω̃2

0�
(1)
k = F�̇

(0)
k + G�

(0)
k , (32)

where

ω̃2
0 = 4πG(1 + w)ρ0

[
(k2 − 3)

(
c2

s + 2
) − 1

]
(33)

F(t) = −(
2 − 6w + 3c2

s

)
H(1), (34)
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G(t) = 1

a2
0

{
12

[
c2
(1) − w(1)

]
+ 24

[
w − c2

s

]a(1)

a0
+ 6ww(1) + 6c2

(1) − 8w(1)

+
[
3w2 − 8w + 6c2

s − 1
]ρ(1)

ρ0
+ k2

[
c2
(1) − 2c2

s
a(1)

a0

]}
. (35)

The change in the frequency, ω0 → ω̃0, shows the stabilizing effect of scalar-field entropy
perturbations, which effectively increase the adiabatic sound speed term in ω0: c2

s → c2
s + 2.

The solution of equation (32) is given by Green’s method in the form

�
(1)
k = cos ω̃0t

ω̃0

∫
�

(0)
k [(F sin ω̃0t)

· − G sin ω̃0t] dt

− sin ω̃0t

ω̃0

∫
�

(0)
k [(F cos ω̃0t)

· − G cos ω̃0t] dt . (36)

Since ω̃2
0 > 0, for k2 � 3, we see that stability is not changed by the introduction of

scalar-field perturbations. We note that if general relativity is extended to include higher-
order curvature corrections to the gravitational Lagrangian, then the existence and stability
conditions for the Einstein static universe are changed in interesting ways [12] which are linked
to the situation of general relativity plus a pure scalar field through the conformal equivalence
of the two problems [13].

5. Spatially homogeneous tensor perturbations

We now investigate the stability of the Einstein static universe to spatially homogeneous
gravitational-wave perturbations of the Bianchi type IX kind. The anisotropy in these spatially
homogeneous perturbations, which is absent within the Friedmann family, is what allows for
tensor modes.

The Einstein static universe is a particular exact solution of the Bianchi type IX, or
Mixmaster, universe containing a perfect fluid and a cosmological constant. The Mixmaster
is a spatially homogeneous closed (compact space sections) universe of the most general type.
It contains the closed isotropic Friedmann universes as particular subcases when a fluid is
present. Physically, the Mixmaster universe arises from the addition of expansion anisotropy
and 3-curvature anisotropy to the Friedmann universe. It displays chaotic behaviour on
approach to the initial and final singularities if w < 1. This is closely linked to the fact that,
despite being a closed universe, its spatial 3-curvature is negative except when it is close to
isotropy.

The diagonal type IX universe has three expansion scale factors ai(t), determined by the
Einstein equations, which are [11]:

(ȧ1a2a3)
·

a1a2a3
= 4

[(
a2

2 − a2
3

)2 − a4
1

]
(a1a2a3)2

+ � + 4πG(1 − w)ρ, (37)

and the two equations obtained by the cyclic interchanges a1 → a2 → a3 → a1, together
with the constraint

ä1

a1
+

ä2

a2
+

ä3

a3
= � − 4πG(1 + 3w)ρ, (38)

and the perfect fluid conservation equation (with w constant)

ρ(a1a2a3)
w+1 = const. (39)

The Einstein static model is the particular solution with all ai = a0 = const. We consider
the stability of this static isotropic solution by linearizing the type IX equations about it:
ai(t) = a0 + δai(t), ρ(t) = ρ0 + δρ(t) and δp = wδρ.
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The linearized field equations lead to

δ̈ai +
12

a2
0

δai = 8

a2
0

(δa1 + δa2 + δa3) + 4πG(1 − w)δρ. (40)

The conservation equation to linear order gives

δρ = −4

(
�

8πG
+ ρ0

) (
δa1 + δa2 + δa3

a0

)
. (41)

If we define an arithmetic-mean perturbed scale factor by

δA(t) ≡ δa1 + δa2 + δa3

a0
, (42)

then it obeys

¨δA = 3δA

[
4

a2
0

− (1 − w)(� + 8πGρ0)

]
= 3δA

a2
0

(1 + 3w). (43)

The first term on the right-hand side arises from the pure spatially homogeneous gravitational-
wave modes of Bianchi type IX (i.e., with δρ = 0 = δp). The second term on the right-
hand side arises from the matter perturbations. Thus we see that the perturbation grows
and the Einstein static solution is unstable to spatially homogeneous pure gravitational-wave
perturbations of Bianchi type IX,

δA ∝ exp

(
2t

√
3

a0

)
. (44)

When the matter perturbations are included the instability remains unless 1 + 3w < 0,
which we have ruled out for a fluid. In this case, the perturbations oscillate. This condition
corresponds to a violation of the strong energy condition and this ensures that a Mixmaster
universe containing perfect fluid matter will expand forever and approach isotropy. Note that
the matter effects disappear at this order when w = 1. This is a familiar situation in anisotropic
cosmologies where a w = 1 fluid behaves on average like a simple form of anisotropy ‘energy’.

The instability to spatially homogeneous gravitational-wave modes is not surprising.
Mixmaster perturbations allow small distortions of the Einstein static solution to occur which
conserve the volume but distort the shape. Some directions expand whilst others contract. Note
that these SO(3)-invariant homogeneous anisotropy modes are different to the inhomogeneous
modes considered in the perturbation analysis. Mixmaster oscillatory behaviour is not picked
out by the eigenfunction expansions of perturbations of Friedmann models.

The relationship between the stability of the Einstein static to inhomogeneous and
spatially homogeneous gravitational-wave perturbations can be considered in the light of the
relationships between the Bianchi type modes and inhomogeneous modes. In open universes,
Lukash [14] has pointed out the correspondence between Bianchi type VII anisotropy
modes and the inhomogeneous gravitational-wave perturbation spectrum that emerges when
appropriate eigenfunctions are chosen for solutions of the Helmholz equation on negatively
curved spaces. These Bianchi type modes correspond to choosing complex wave numbers
[15, 16]. In the case of a closed universe of Bianchi type IX a similar characterization of the
homogeneous tensor mode as arising by choice of an imaginary wave number would lead to
the Mixmaster instability found above in the case of k2 < −2. If such modes are admitted in
the spectrum of perturbation modes for the closed geometry, then they will lead to instability.
However, since superpositions of them lead to non-self-adjointness of the Laplacian [17],
there will be problems with quantum analogues of these modes and it is not clear that they are
physically admissible in the real universe.
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6. Conclusions

There is considerable interest in the existence of preferred initial states for the universe and in
the existence of stationary cosmological models. So far this interest has focused almost entirely
upon the de Sitter universe as a possible initial state, future attractor, or global stationary state
for an eternal inflationary universe. Of the other two homogeneous spacetimes, the Einstein
static provides an interesting candidate to explore whether it could play any role in the past
evolution of our universe. It is important to know whether it can provide a natural initial
state for a past eternal universe, whether it allows the universe to evolve away from this state,
and whether under any circumstances it can act as an attractor for the very early evolution
of the universe. We might also ask whether it is not possible for it to provide the globally
static background state for an inhomogeneous eternal universe in which local regions undergo
expansion or contraction, manifesting an instability of the Einstein static universe. With these
questions in mind we have investigated in detail the situations under which the Einstein static
universe is stable and unstable.

We have shown that the Einstein static universe is neutrally stable against inhomogeneous
vector and tensor linear perturbations, and against scalar density perturbations if c2

s > 1
5 ,

extending earlier results of Gibbons for purely conformal density perturbations. However,
we find that spatially homogeneous gravitational-wave perturbations of the most general
type destabilize a static universe. We pointed out the link that can be forged between this
homogeneous instability and the behaviour of the inhomogeneousgravitational wave spectrum
by choosing modes with imaginary wave number. Our results show that if the universe is in a
neighbourhood of the Einstein static solution, it stays in that neighbourhood, but the Einstein
static is not an attractor (because the stability is neutral, with non-damped oscillations).
Expansion away from the static state can be triggered by a fall in the pressure of the matter.
Typically, expansion away from the static solution will lead to inflation. If inflation occurs,
then perturbations about a Friedmann geometry will rapidly be driven to zero. The nonlinear
effects (which will certainly be important in these models because of the initial infinite
timescale envisaged) will be discussed in a further paper, as will other aspects of the spatially
homogeneous anisotropic modes.
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