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Abstract
We use covariant and first-order formalism techniques to study the properties
of general relativistic cosmology in three dimensions. The covariant approach
provides an irreducible decomposition of the relativistic equations, which
allows for a mathematically compact and physically transparent description
of the three-dimensional spacetimes. Using this information we review the
features of homogeneous and isotropic 3D cosmologies, provide a number of
new solutions and study gauge invariant perturbations around them. The first-
order formalism is then used to provide a detailed study of the most general
3D spacetimes containing perfect-fluid matter. Assuming the material content
to be dust with comoving spatial 2-velocities, we find the general solution
of the Einstein equations with a non-zero (and zero) cosmological constant
and generalize known solutions of Kriele and the 3D counterparts of the
Szekeres solutions. In the case of a non-comoving dust fluid we find the general
solution in the case of one non-zero fluid velocity component. We consider the
asymptotic behaviour of the families of 3D cosmologies with rotation and shear
and analyse their singular structure. We also provide the general solution for
cosmologies with one spacelike Killing vector, find solutions for cosmologies
containing scalar fields and identify all the PP-wave 2 + 1 spacetimes.

PACS numbers: 02.40.−k, 04.20.Dw, 04.20.Jb, 04.20.Ex, 04.20.Cv

1. Introduction

General relativity in three spacetime dimensions is known to possess a number of special
simplifying features: there are no gravitational waves, no black holes in the absence of a
negative cosmological constant, the Weyl curvature is identically zero, and the weak-field
limit of the theory does not correspond to Newtonian gravity in two space dimensions [1–9].
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The theory is therefore considerably ‘smaller’ than general relativity spacetimes with four
(or more) dimensions, and the strong-energy condition that creates geodesic focussing does
not depend on the density of the material sources. These simplifying features mean that
considerable progress can be made in the search for the general cosmological solution of the
three-dimensional Einstein equations. In an (N + 1)-dimensional spacetime the number of
independently arbitrary N-dimensional functions of the space coordinates that are needed to
specify the Cauchy data for the general cosmological problem on a spacelike hypersurface in
vacuum is (N + 1)(N − 2); in the presence of a general (non-comoving) perfect fluid it is
N2 − 1; and for a comoving perfect fluid it is N2 − N − 1 [2]. Thus, in the N = 2 case,
we see that the number reduces to zero for the vacuum solution (reflecting the absence of
free gravitational fields in vacuum), reduces to one arbitrary spatial function in the comoving
perfect-fluid case, and to three arbitrary spatial functions for a perfect fluid.

In this paper we will set up the general cosmological problem in three-dimensional
spacetimes and find the general solution of the field equations in the case of comoving
pressure-free matter, with and without a cosmological constant, �. We go on to find solutions
for the case of non-comoving dust and classify the singularities and asymptotic behaviours
that arise in both cases with and without a cosmological constant. The relative tractability of
the general cosmological problem in (2 + 1) dimensions allows us to go some way towards
finding a general solution of the Einstein equations and we are able to isolate those features
which prevent a full solution being found. In particular, we are able to find and classify the
solutions for dust containing one of the (two possible) non-zero spatial 2-velocity components.

There have been several past investigations of the structure of (2 + 1)-dimensional general
relativity and studies of the properties of particular solutions with high symmetry (see [1–8]
and [10–14]). Important motivations for these studies were provided by the astrophysical
interest in the possible observational signatures of cosmic strings and domain walls in the
universe [15–18]. Higher-order curvature contributions were discussed in [2], together with
the special features of the Newtonian-relativistic correspondence in general relativity and
related theories, while the study of quantum gravity is reviewed in [19]. Cosmological
solutions and singularities were discussed in [2] and [20, 21]; static stars were analysed in
[22], while gravitational collapse of spherically symmetric dust clouds have been considered
in [23–25].

The outline of this paper is as follows. In section 2 we define the 3D Einstein equations and
our notations. Section 3 introduces the 2 + 1 covariant formalism and the general kinematics
of 3D spacetimes, identifying the special features that arise from the lower dimensions and
from the vanishing of the Weyl curvature. These include the key role of the isotropic pressure
as the sole contributor to the gravitational mass of the system and the fact that vorticity never
increases with time. In section 4 we give a number of new cosmological solutions, review the
characteristics of the homogeneous and isotropic models, including those that are singularity-
free, and provide the generalization of the Gödel universe to three dimensions. We also
consider linear perturbations around the 3D analogues of the ‘dust’-dominated FRW models
and find them to be (neutrally) stable. In section 5 we employ Witten’s first-order formalism
[26] to formulate the equations governing the most general 3D cosmological spacetime metric
containing perfect-fluid matter. Then, in section 6 we specialize the matter source to pressure-
free dust with non-zero � and comoving 2-velocities and find the general solution of the
field equations. These fall into three classes, one of which generalizes the solution of Kriele
[23] to � �= 0, while another is the generalization of the Szekeres metric with non-zero �

to 2 + 1 dimensions [27, 28]. Section 7 considers the most general dust cosmologies with
non-comoving velocities and finds various new classes of solutions. We study the asymptotic
behaviour of these solutions and analyse in detail the structure of their spacelike and timelike
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singularities. Also, by means of a number of examples, we illustrate the wide range of
possible behaviours in the presence of vorticity and shear. The same section also introduces a
transformation that generates exact solutions with non-zero cosmological constant from those
with vanishing �. Finally, in section 8 we look at the case of a pure scalar field, provide the
general solution of Einstein’s equations with one spacelike Killing vector, and identify all the
2 + 1 PP-wave spacetimes. Our results are summarized and discussed in section 9.

2. Einstein’s equations

It has long been known that general relativity, as a theory of a Riemannian spacetime, can
be based on a small number of generally accepted postulates which are independent of the
spacetime dimensions [29–31]. Assuming a non-zero cosmological constant, these postulates
demand that the field equations take the form

Rab − 1
2Rgab + �gab = κTab, (1)

where Rab is the Ricci tensor, with R = Ra
a, Tab is the energy–momentum tensor of the

matter generating the metric field gab, � is the cosmological constant and κ is a dimensional
coupling constant3. When dealing with three-dimensional spacetimes gabg

ab = δa
a = 3.

In this geometrical environment R = −2κT + 6�, with T = Ta
a , and Einstein’s equations

become (e.g. see [1, 2])

Rab = κ(Tab − T gab) + 2�gab. (2)

The spacetime geometry is determined by the Riemann curvature tensor Rabcd . In three
dimensions the latter has six independent components, exactly as many as the associated Ricci
tensor. This means that the spacetime geometry can be expressed solely in terms of the Ricci
curvature, namely that [32, 33]

Rabcd = gacRbd + gbdRac − gbcRad − gadRbc − 1
2R(gacgbd − gadgbc). (3)

As a result, the three-dimensional Weyl tensor vanishes identically and the gravitational field
has no dynamical degrees of freedom. The spacetime curvature is completely determined by
the local matter distribution and the theory is Machian.

3. Covariant decomposition

3.1. Observers

In analogy to the standard 1 + 3 covariant approach to general relativity introduced by Ehlers
[34] and elaborated by Ellis (e.g. see [35] for a recent review), we introduce a family of
timelike (fundamental) observers with worldlines tangential to the 3-velocity field ua . The
latter determines the time direction and is normalized so that uau

a = −1. The two-dimensional
space is defined by projecting orthogonal to ua by means of the projection tensor

hab = gab + uaub, (4)

where hab = h(ab), habu
b = 0, habh

b
c = hac and ha

a = 2. Using hab one also defines the
covariant derivative operator of the 2D space as Da = ha

b∇b.
The irreducible kinematical variables, which describe the motion of the above-defined

observers in a invariant way, are obtained by decomposing the covariant derivative of the
3-velocity. This splitting gives

∇bua = σab + ωab + 1
2�hab − u̇aub, (5)

3 Throughout this paper Latin indices run between 0 and 2 and Greek take the values 1 and 2. Also, the three-
dimensional coupling constant κ is measured in units of mass−1 and therefore defines a natural mass unit [1].
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where σab = D〈bua〉 is the shear, ωab = D[bua] is the vorticity, � = Daua = ∇aua is the
area expansion (or contraction) scalar and u̇a = ub∇bua is the 3-acceleration. Therefore,
σabu

b = 0 = ωabu
b = u̇au

a by construction.
The tensor Dbua ≡ hb

dha
c∇duc = σab +ωab + (�/2)hab describes changes in the relative

position of the worldlines of two neighbouring observers. When the latter follow the motion of
a fluid, the effect of � is to change the area of a given fluid element, without causing rotation
or shape distortion. This scalar also defines the average scale factor, a, by

ȧ

a
= 1

2
�. (6)

The shear monitors distortions in the element’s shape that leave the area unaffected, while
ωab describes changes in its orientation under constant area and shape. The symmetric and
trace-free nature of σab ensures that it has only two independent components, while the
antisymmetry of ωab guarantees that the vorticity tensor is determined by a single component.
In other words, the shear and the vorticity correspond to a vector and a scalar, respectively. The
latter reflects the fact that the rotational axis has been reduced to a point. Defining εab = ε[ab]

as the two-dimensional permutation tensor, with εabu
b = 0, the vorticity scalar is

ω = 1
2εabω

ab, (7)

with ωab = ωεab. Note that εab = ηabcu
c by definition, where ηabc is the 3D totally

antisymmetric alternating tensor. The latter satisfies the condition ηabcη
dqs = −3!δ[a

dδb
qδc]

s ,
which ensures that εabε

cd = 2h[a
chb]

d .

3.2. Matter fields

Suppose that the matter that sources the three-dimensional metric field is a perfect fluid.
Then, relative to an observer moving with 3-velocity ua , the energy–momentum tensor of the
material component takes the form

Tab = ρuaub + phab, (8)

where ρ is the energy density, p is pressure and its trace is T = 2p−ρ. Substituting the above
into the Einstein field equations (2) the latter reads

Rab = 2(κp − �)uaub + [κ(µ − p) + 2�]hab, (9)

with trace R = 2[κ(µ− 2p) + 3�]. The above also provides the following auxiliary relations:

Rabu
aub = 2(κp − �),

ha
chb

dRcd = [κ(ρ − p) + 2�]hab and ha
bRbcu

c = 0,
(10)

which will prove useful later.
The twice-contracted Bianchi identities imply that ∇bGab = 0 and consequently the

condition ∇bTab = 0. The timelike and spacelike parts of the latter lead to the 3D fluid
conservation laws. These are

ρ̇ = −�(ρ + p), (11)

for the energy density of the fluid, and

(ρ + p)u̇a = −Dap (12)

for its momentum density. The above ensure that the conservation laws of a perfect fluid have
the same functional form as their four-dimensional counterparts (compare to equations (37),
(38) of [35]).

The nature of the medium is determined by its equation of state. Here we will only
consider barotropic fluids with p = wρ, where w represents the barotropic index. When
w = 0 we are dealing with pressure-free dust, while isotropic radiation has p = ρ/2 and
corresponds to w = 1/2 [1].
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3.3. Spatial curvature

The intrinsic curvature of the two-dimensional space orthogonal to ua is determined by the
associated Riemann tensor. In analogy with its standard 3D counterpart (see equation (77) in
[36]), the latter is defined by

Rabcd = ha
qhb

shc
f hd

pRqsfp − vacvbd + vadvbc, (13)

where

vab = Dbua = σab + ωab + 1
2�hab, (14)

is the relative position vector. Note that vab characterizes the extrinsic curvature (i.e., the
second fundamental form) of the space.

Starting from equation (13), assuming perfect-fluid matter and using expressions (3), (9),
(10) and (14), the Riemann tensor of the 2D (spatial) sections reads

Rabcd = (
κρ − 1

4�2 + �
)
(hachbd − hadhbc) − (σac + ωac)(σbd + ωbd)

+ (σad + ωad)(σbc + ωbc) − 1
2�[(σac + ωac)hbd + hac(σbd + ωbd)

− (σad + ωad)hbc − had(σbc + ωbc)], (15)

with Rabcd = R[ab][cd]. In agreement with standard 3 + 1 gravity, the isotropic pressure does
not contribute to the curvature of the space orthogonal to ua . Also, in the absence of anisotropy
(i.e. when σab and ωab vanish) the above reduces to

Rabcd = (
κρ − 1

4�2 + �
)
(hachbd − hadhbc). (16)

Defining Rab = Rc
acb as our local 2D Ricci tensor, we may contract expression (15)

to obtain the following three-dimensional analogue of the Gauss–Codacci formula (see
equation (54) in [35])

Rab = (
κρ − 1

4�2 + σ 2 − ω2 + �
)
hab, (17)

which here holds for perfect-fluid matter. In deriving the above we used the results ωc[aσ
c
b] = 0

and σc〈aσ c
b〉 = 0 = ωc〈aωc

b〉. The former holds because ω12
(
σ 1

1 + σ 2
2
) = 0 (i.e. the single

independent component vanishes due to the trace-free nature of the shear). Similarly, the two
independent components of σc〈aσ c

b〉 are also identically zero. Last, the result ωc〈aωc
b〉 = 0

is guaranteed by the relation ωab = ωεab and the properties of εab (see section 3.1). The
absence of a skew and also of a symmetric and trace-free part from equation (17) agrees with
symmetries of the Riemann tensor in 2D spaces (e.g. see [1]).

Finally, the trace of (17) leads to the curvature scalar of the spatial sections, which may
also be seen as the generalized Friedmann equation for three-dimensional spacetimes (compare
to equation (55) of [35])

R ≡ Ra
a = 2

(
κρ − 1

4�2 + σ 2 − ω2 + �
)
. (18)

3.4. Kinematics

The functional form of the Ricci identity is independent of dimension. Thus, when applied to
the 3-velocity vector ua , the Ricci identity reads

∇a∇buc − ∇b∇auc = Rabcdu
d, (19)

where Rabcd is the Riemann tensor of the 3D spacetime (see expression (3)). Contracting
the above along ub, employing equations (3), (10), and then taking the trace of the resulting
expression we obtain the 3D analogue of Raychaudhuri’s equation

�̇ = − 1
2�2 − 2κp − 2(σ 2 − ω2) + Dau̇a + u̇au̇a + 2�, (20)



5296 J D Barrow et al

with 2σ 2 ≡ σabσ
ab and 2ω2 ≡ ωabω

ab. The above is the key equation of gravitational
attraction, as it monitors the average separation between neighbouring particle worldlines.
The most important difference between (20) and its 4D counterpart (see equation (29) in
[35]) is that here only the fluid pressure contributes to the gravitational mass of the medium:
the density ρ does not contribute. This unusual feature consists a major departure from
standard gravity. One consequence is the existence of homogeneous and isotropic static
three-dimensional models with dust and zero cosmological constant (see solution (29) below).

The symmetric and trace-free part of the contracted Ricci identity, together with the
auxiliary relations (10) leads to the propagation formula for the shear in three dimensions:

ha
chb

d σ̇cd = −�σab + D〈bu̇a〉 + u̇〈au̇b〉. (21)

Relative to the four-dimensional case (see equation (30) in [35]), we notice the absence of the
electric Weyl component from the right-hand side of this formula. This reflects the vanishing
of the free gravitational field in 3D gravity. Contracting this expression with σab we obtain
the propagation formula for the shear magnitude

(σ 2)· = −2�σ 2 + σabD〈bu̇a〉 + σabu̇〈au̇b〉, (22)

where 2σ 2 = σabσ
ab by definition. In the absence of fluid accelerations the 2nd and 3rd terms

on the right-hand side vanish and the equation integrates to give σ 2 ∝ a−4.
Similarly, the contracted antisymmetric component of (19) gives the 3D counterpart of

the vorticity propagation equation. The latter reads

ha
chb

dω̇cd = −�ωab + D[bu̇a]. (23)

Comparing to equation (31) of [35] we note the absence of the ωc[aσ
c
b] term. This is so

because ωc[aσ
c
b] = 0 in 3D (see also above). Also, contracted with ωab, and recalling that

2ω2 ≡ ωabω
ab equation (23) gives the scalar vorticity propagation formula:

(ω2)· = −2�ω2 + ωabD[bu̇a]. (24)

Again, in the absence of accelerations, when the pressure vanishes, this equation integrates to
give ω2 ∝ a−4, as expected by the conservation of angular momentum.

Assuming a homogeneous isotropic background spacetime containing a single barotropic
fluid with constant barotropic index w = p/ρ (see section 4.1), we find that linearized
rotational perturbations propagate as

ω̇ab = −(
1 − c2

s

)
�ωab. (25)

Here c2
s = dp/dρ = w is the square of the adiabatic sound speed and we have combined

equations (11), (12) with the commutation law D[aDb]f = −ḟ ωab. Therefore, the expansion
decreases the vorticity of a two-dimensional space as ω2 ∝ a−4(1−w), unless the fluid has a stiff
equation of state (i.e. when c2

s = 1 = w). Recall that in standard general relativity vorticity
increases when w > 2/3 [37].

The simultaneous effects of shear and vorticity on a cosmology with negligible
accelerations can be evaluated from these simple relations. For all equations of state we have
σ 2 ∝ a−4 but the centrifugal energy depends on the equation of state since ω2 ∝ a−4(1−w).
Hence, the ratio of the distortion energy density to the centrifugal energy density is

σ 2

ω2
∝ a−2w

and the shear always dominates as a → 0 when p > 0 but the vorticity always dominates
as a → ∞. The presence of fluid acceleration can modify this behaviour; an example with
p = 0 will be given below.
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4. Cosmology in (2 + 1)-dimensional spacetimes

4.1. Homogeneous and isotropic spacetimes

Spatial homogeneity and isotropy means that we can always choose a coordinate system such
as the line element of the three-dimensional spacetime takes the Friedmann–Robertson–Walker
(FRW) form

ds2 = −dt2 + a2hαβ dxα dxβ, (26)

where the scale factor a = a(t) completely determines the time evolution of the model.
This form also represents the metric of the three-dimensional analogue of the familiar FRW
cosmologies. The kinematics of (26) is monitored via one propagation and one constraint
equation (see expressions (20) and (18)). Assuming a barotropic fluid with constant barotropic
index, setting � = 0 and recalling that � = 2ȧ/a, these formulae recast into

ä

a
= −κwρ (27a)

and (
ȧ

a

)2

= κρ − k

a2
, (27b)

respectively (k = 0,±1 is the curvature index of the spatial sections). The matter component
obeys the conservation law (11), which accepts the solution

ρ = ρ0

(a0

a

)2(1+w)

, (28)

with a0 being constant.
For dust, w = 0, and one immediately finds (see equation (27a)) that a ∝ t for all signs

of k. More specifically, expression (28) gives ρ ∝ a−2, which substituted into equation (27b)
leads to

a = (
κρ0a

2
0 − k

)1/2
t + a0, (29)

where the product ρ0a
2
0 is proportional to the total mass of the model. Therefore, the scale

factor of a dust-dominated, three-dimensional, FRW universe evolves linearly with time,
irrespective of its spatial curvature and no collapse to a final singularity occurs. Note that
when κρ0a

2
0 = k we obtain a static solution with a = a0 [1]. Unlike its 4D counterparts, this

static universe has zero cosmological constant (see also section 5 above).
When the matter content is in the form of black-body radiation, the barotropic index is

w = 1/2. Then, expression (28) gives ρ ∝ a−3 and the system (27) has the solution

a =
∫ √

κρ0a
3
0 − ka

a
dt + a0. (30)

For k = 0 the above reduces to a ∝ t2/3 at late times, which coincides with the scale-factor
evolution in standard 3 + 1 dust-dominated FRW universes.

One can study perturbations around the above given homogeneous and isotropic solutions
by introducing the covariantly defined variablesDa = (a/ρ)Daρ andZa = aDa�. The former
describes variations in the matter density and the latter in the area expansion as measured by a
pair of neighbouring observers [38]. Also, both variables vanish in the spatially homogeneous
background and therefore satisfy the gauge-invariance criterion. In the case of a pressureless
fluid (i.e. for w = 0 = c2

s ) the linear evolution of inhomogeneities is monitored by

Ḋ = −Z and Ż = −�Z, (31)
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on all scales. Then, using solution (29) and setting D0 = (αt0 + a0)Z0/α initially, we find that
the density gradient decays as

D = D0

(
αt0 + a0

αt + a0

)
, (32)

with α =
√

κρ0a
2
0 − k and k = 0,±1 (see (29)). For general initial conditions, on the other

hand, it is straightforward to show that D → D0 − (αt0 +a0)Z0/α at late times. Recalling that,
for zero pressure, shear and vorticity perturbations also decay in time (see equations (21) and
(23)), we conclude that in the absence of pressure the 3D analogues of the FRW cosmologies
are either stable or neutrally stable. This behaviour is very different from that of conventional
FRW models, all of which are unstable to density perturbations, and reflects the fact that in
three dimensions the gravitational mass of a pressure-free medium vanishes (see equation (20))
and spherical regions of all curvatures asymptote to a → t as t → ∞. The immediate
consequence is the absence of linear Jeans-type instabilities in these models.

4.2. Homogeneous and anisotropic spacetimes

The simplest 3D line element describing a homogeneous and anisotropic spacetime has the
following Bianchi I-type form:

ds2 = −dt2 + A2 dx2 + B2 dy2, (33)

where A = A(t) and B = B(t) are the two individual scale factors. When � = 0, the spatial
flatness of the above metric means that the 3D analogue of the Bianchi I universe is covariantly
described by the following set of propagation equations

ρ̇ = −(1 + w)�ρ, (34a)

�̇ = − 1
2�2 − 2κwρ − 2σ 2, (34b)

σ̇ = −�σ, (34c)

ω ≡ 0 (34d)

supplemented by the constraint
1
4�2 = κρ + σ 2. (35)

The above are obtained from equations (11), (20), (22) and (18), respectively, after dropping
their inhomogeneous terms and assuming spatial flatness together with zero vorticity. Setting
� = 2ȧ/a, where a represents the geometric-mean scale factor, expressions (34a) and (34c)
lead to the evolution laws

ρ = ρ0

(a0

a

)2(1+w)

and σ = σ0

(a0

a

)2
, (36)

for the matter energy density and the shear, respectively. Substituting these results into
equation (35) and assuming a spacetime filled with pressure-free dust we arrive at

a = a0

√
κρ0t2 + 2σ0t . (37)

As expected, for σ0 = 0 the above result reduces to its isotropic counterpart (see equation (29)).
The same also happens at late times, when the shear contribution to solution (37) becomes
negligible.

Note that one can use the evolution law of the average scale factor to obtain those of the
individual ones. Assuming dust, recalling that

Ȧ

A
+

Ḃ

B
= � and

Ȧ

A
− Ḃ

B
= 2σ, (38)
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and using results (36) and (37) we arrive at

A = A0

(
t

t0

)
and B = B0

(
κρ0t + 2σ0

κρ0t0 + 2σ0

)
. (39)

In the vacuum case (ρ0 ≡ 0), the metric is just a coordinate transformation of flat spacetime
rather than an anisotropic cosmology.

4.3. Rotating spacetimes

Consider a rotating three-dimensional spacetime with flat 2D sections filled with pressureless
matter. Setting � = 0 and assuming spatial homogeneity, the time evolution of the model (at
least locally) is monitored by the following system of four propagation equations

ρ̇ = −�ρ, (40a)

�̇ = − 1
2�2 − 2σ 2 + 2ω2, (40b)

σ̇ = −�σ (40c)

and

ω̇ = −�ω, (40d)

constrained by

�2 = 4(κρ + σ 2 − ω2). (41)

Proceeding as before, we may use the area expansion scalar (�) to define an average scale
factor (a) so that � = 2ȧ/a. Then, expressions (40a), (40b) and (40c) translate into

ρ = ρ0

(a0

a

)2
, σ = σ0

(a0

a

)2
and ω = ω0

(a0

a

)2
(42)

respectively. Substituting the above results into the right-hand side of constraint (41) and
setting a = a0 at t = 0 we obtain

a = a0

√
1 + κρ0t2 + 2t

√
κρ0 + σ 2

0 − ω2
0, (43)

where κρ0 + σ 2
0 − ω2

0 = �2
0

/
4 � 0 because of (41). Accordingly, despite the presence of

non-zero shear and vorticity, the average scale factor evolves as its homogeneous and isotropic
counterpart if σ0 = ω0. The situation in 3D is unusual in that the shear and vorticity scale as
the same powers of the scale factor and are both equally important at all times. In the case of
dust, the matter density also scales as a−2 (see (42)).

One can also obtain a 3D Gödel-type universe. The Gödel spacetime is a homogeneous
spacetime and a rotating solution of Einstein’s equations which permits closed timelike curves
[39, 40]. Covariantly, Gödel’s world is described by [41, 42]

� = 0 = u̇a = σab and ωab �= 0. (44)

Thus, with the exception of the vorticity, all the kinematical variables vanish identically.
Note that the overall homogeneity of the Gödel spacetime guarantees that the vorticity is
a covariantly constant quantity and that all the propagation equations reduce to constraints.
Applying (44) to three dimensions we arrive at the system

ρ̇ = 0, (45a)

ω̇ = 0, (45b)
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κp − ω2 − � = 0 (45c)

and

R = 2(κρ − ω2 + �) (45d)

which describes a 3D Gödel-type universe. Note that for pressure-free matter the cosmological
constant is necessarily negative (i.e. � = −ω2—see equation (45c)). Also, unlike its standard
3 + 1 counterpart, the three-dimensional Gödel-type spacetime can have non-vanishing
spatial Ricci curvature. This is guaranteed by (45d). The empty Gödel-type model with
R = −4ω2 < 0 is equivalent to anti-de Sitter (AdS) space. Rooman and Spindel, [43],
considered a one-parameter subset of these non-flat Gödel-type solutions and showed that
they can be seen as arising from a directional squashing of the light cones of AdS, which
breaks the so(2, 2) isometry of the AdS Killing vectors into so(2, 1) × so(2). It was shown in
[43] that all the non-empty Gödel-type solutions considered contained closed-timelike curves
but they vanish in the AdS limit.

4.4. Singularities

The 3D analogues of the standard singularity theorems are relatively straightforward to deduce.
The study of the Riemann and the Ricci curvature shows that there are no Weyl curvature
singularities and the analogue of the strong-energy condition (i.e. Rabu

aub � 0) reduces to the
inequality p � 0 for a perfect fluid and to the positivity of the sum of the principal pressures
if they are anisotropic. Also, the form of the Raychaudhuri equation (see (20)) guarantees that
for geodesically moving observers

�̇ + 1
2�2 = −2κp − 2(σ 2 − ω2) + 2�. (46)

Therefore, for vanishing cosmological constant and in the absence of rotation, an initially
converging family of timelike worldlines will focus (i.e. � → −∞). For non-zero vorticity,
however, this may not be necessarily the case. For example, applied to a spatially homogeneous
and rotating spacetime filled with an pressureless dust the above gives

�̇ +
1

2
�2 = −2

(
σ 2

0 − ω2
0

) (a0

a

)4
. (47)

In this case, whether caustics will form or not depends entirely on the balance between shear
and rotation. When ω2

0 > σ 2
0 , in particular, vorticity can stop an initially converging family of

worldlines from focussing.
There are also simple exact solutions that describe ‘bouncing’ 3D cosmologies with

p < 0. Consider, for example, a perfect fluid with p = −ρ/2. Then, assuming spatial
homogeneity and isotropy, equation (11) gives ρ ∝ a−1 and the Friedmann equation
reduces to (

ȧ

a

)2

= M

a
− k

a2
, (48)

where M > 0 is constant and k is the spatial curvature index. The bouncing solution is

a(t) = amin + 1
4M(t − tmin)

2, (49)

with amin = k/M . Accordingly, a non-singular minimum requires positive curvature. Setting
k = + 1 and tmin = 0 the required scale-factor evolution is represented by the parabola

a(t) = M−1 + 1
4Mt2. (50)
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5. First-order formalism

In 2 + 1 dimensions it has been shown by Witten [26] that the Palatini action for general
relativity is equivalent to

Sg =
∫

η̃abceI
a

3FbcI , (51)

where η̃abc is the metric-independent alternating symbol in 2+1 dimensions. Recall, our
signature is (− + +) and we choose η̃012 = −1 ⇒ η̃012 = +1; eI

a is a dreibein, and in some
sense should be viewed as the square root of the metric

gab = eI
ae

J
b ηIJ ,

where ηIJ = diag(−1 + 1 + 1). We set

3FabI = 2∂[a
3AI

b] + εIJK
3AJ

a
3AK

b ,

where 3AI
a is an SO(2, 1) connection, and εIJK is the standard alternating symbol. Here

a, b = 0, 1, 2 are spacetime indices, whilst I, J,K = 0̂, 1̂, 2̂ are internal SO(2, 1) indices.
We raise and lower internal indices with ηIJ and ηIJ , so εIJK = −εIJK , and we choose
ε0̂1̂2̂ = +1. The action (51) reduces to the standard second-order gravitational action when
3AI

a is compatible with eI
a i.e.

D[aeb]I := ∂[aeb]I + εIJK
3AJ

[ae
K
b] = 0. (52)

We could also find this equation by varying the above action with respect to 3AI
a . There is

plenty of gauge freedom in this model, so we firstly simplify matters by choosing to write the
metric in synchronous gauge as

ds2 = gab dxa dxb = −dt2 + hαβ dxα dxβ, (53)

where α, β = 1, 2. In synchronous gauge: e0̂
0 = 1, ei

0 = 0, e0̂
α = 0, where i = 1̂, 2̂ are 2D

internal indices. Throughout this section, we will use a, b, c, d to designate 3D spacetime
indices, and I, J,K for 3D internal indices. Lower case Greek letters will be used for 2D
spacetime indices, and i, j, k for 2D internal ones. We define a projection operator onto the
surfaces t = const by

hab = gab + nanb, (54)

where na = (1, 0, 0) and hab = hαβ is the induced metric on the spacelike surfaces defined by
t = const. We make some further definitions:

Ei
α = hβ

αei
β, (55)

Ai
a = hβ

α
3Ai

β, (56)

Ba = hβ
α

3Aβ0̂, (57)

FαβI = hγ
αhδ

β
3FγδI , (58)

(n · A)I = na3AI
a. (59)

We can also use the gauge freedom in the definition of 3AI
a to set (n · A)0̂ = 0, and do so. We

are still left with the freedom to make SO(2) rotations on the internal indices, i = 1, 2, with
the angle of rotation an arbitrary function of the spatial coordinates (x, y).
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5.1. Field equations

In 2 + 1 spacetime dimensions:

Rabcd = Racgbd − Radgbc + Rbdgac − Rbcgad +

(
R

2

)
(gadgbc − gacgbd), (60)

Rab = κ(Tab − T gab), (61)

R = −2κT . (62)

So, therefore,

Rabcd = κ[Tacgbd − Tadgbc + Tbdgac − Tbcgad + T (gadgbc − gacgbd)],

where the curvature 3FabI is related to the Rabcd by
3FabI = Rabcde

cJ edKεIJK.

We define T IJ = eaI ebJ Tab, so the Einstein equations can then be written as

D[aeb]I = 0, (63)
3FabI = κ

[
2eL

[ae
K
b]T

J
L εIJK − T eJ

a eK
b εIJK

]
. (64)

Note that these equations remain well defined even if det(e) = √−g = 0, so in this form the
field equations actually describe a theory that is more general than general relativity. When
eI
a is invertible, however, these field equations are fully equivalent to 3D general relativity.

We are concerned with the dynamics of perfect-fluid spacetimes and for the purposes of this
section will consider only dust models, p = 0, so T IJ = κρuIuJ −�ηIJ , where uKuK = −1.
We write uk = Uk = Uk and u0̂ = 1 + UkU

k, k = 1, 2.

5.2. 2 + 1 decomposition of field equations

We now use na and ha
b to decompose the field equations. From equation (63) we find that

n · Ai = 0 and

Ėαi = εijA
j
α, (65)

η̃αβ∂αEβi + εijBαE
j

βη̃αβ = 0, (66)

η̃αβεijA
i
αE

j

β = 0, (67)

and by projecting equation (64) we arrive at

Ḃα = κρu0̂U
iεijE

j
α, (68)

Ȧβi = κρ
[
UkUkεijE

j

β − UlE
l
βεijU

j
] − �εijE

j

β, (69)

η̃αβ∂αAβi + εijBαA
j

βη̃αβ = −κρu0̂U
jεjkE

k
αEβi η̃

αβ, (70)

η̃αβ
(
2∂αBβ + εijA

i
αA

j

β

) = κρ
[
2Ek

αE
j

βη̃αβUkU
iεij + Ei

αE
j

βη̃αβεij

]
+ �εijE

i
αE

j

βη̃αβ . (71)

Equations (65), (68) and (69) provide ten evolution equations for the ten degrees of freedom
contained in the Ei

α, Bα and Ai
α . To solve these we must specify these quantities, as well as ρ

and the Ui , on some initial spacelike hypersurface: a total of 13 initial functions. The other
equations amount to six consistency conditions, which restricts the number of free functions to
7. We may still make three coordinate transforms, and one internal SO(2) rotation, or gauge
transform. This brings us down to three functions that may be freely specified on the initial
surface; we take these to be ρ, U 1 and U 2. It is easy to check that the consistency conditions
are preserved by the evolution equations.
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6. General cosmological solutions with comoving dust

The equations are particularly simple when the velocity can be chosen to be co-moving (which,
for (2 + 1)-dimensional dust, is equivalent to it being irrotational). We fix our coordinate system
by choosing both hαβ and ḣαβ to be diagonal on our initial surface; for a proof that this may
always be done see [23]. It was also proved by Kriele that if, initially, ḣαβ �= λ(x, y)hαβ then
this coordinate choice is unique and the only remaining freedom is t → t + t0, x → X(x)

and y → Y (y) although we also retain the freedom to interchange x and y. In this case, and
only this case, we may use the coordinate and gauge freedoms to move to a frame where the
fluid is comoving and Ei

a and Ėi
a are diagonal at some initial instance, and then the evolution

equations ensure that they remain diagonal at all times. Such a coordinate transform leads to
equation (67) being automatically satisfied. Thus, in making this coordinate choice, we reduce
the number of consistency equations by 1 and so the number of free-functions that can be
specified on some initial surface increases by 1. We have already set U 1 = U 2 = 0 so we are
therefore left with two free functions. Solutions of this system represent all (2 + 1)-dimensional
dust spacetimes with vanishing vorticity.

If ḣαβ(t0) = λ(x, y)hαβ(t0) for some λ(x, y), then we may further transform to a
conformal gauge so that

hαβ = (1 + λ(x, y)(t − t0)) e2φ(x,y)δαβ,

where δαβ = diag(1, 1); such a coordinate choice is unique up to x → Ax + B, y →
Ay + C, t → t + t0 . We keep the freedom to interchange x and y. We shall see that such
spacetimes are specified by only one free function of x and y.

We use our remaining coordinate freedom to set hαβ and ḣαβ to be diagonal initially, and
fix the gauge of our internal index by requiring Ei

α and εijA
j
α = Ėαi to be diagonal initially.

For comoving systems Ui = 0, and so by combining equations (65) and (69) we see that

Ëαi = �Eαi.

Thus, if Ei
α and εijA

j
α = Ėαi are diagonalized initially, they will remain diagonal for all

time. We have now fixed our system and our internal gauge freedom. With these choices
equation (67) is automatically satisfied. Solving for Ei

α gives us

E1̂
1 = C(x, y) sh�(t) + D(x, y) ch�(t), (72)

E2̂
2 = W(x, y) sh�(t) + V (x, y) ch�(t), (73)

A2̂
1 = C(x, y) ch�(t) + �D(x, y) sh�(t), (74)

A1̂
2 = −W(x, y) ch�(t) − �V (x, y) sh�(t), (75)

with C(x, y),D(x, y),W(x, y) and V (x, y) to be determined by the remaining equations. We
have defined sh�(t) = �−1/2 sinh(�1/2t), and ch�(t) = cosh(�1/2t). All other components
of Ai

α and Ei
α equal to zero. For comoving systems we also have

Ḃα = 0.

This equation is automatically satisfied whenever the two consistency conditions, (66) and
(70), hold. In our choice of coordinates and with our gauge-fixing these equations read

∂yC(x, y) = B1W(x, y), (76)

∂yD(x, y) = B1V (x, y), (77)

∂xW(x, y) = −B2C(x, y), (78)
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∂xV (x, y) = −B2D(x, y). (79)

The 2-surface, t = const, is flat whenever η̃αβ∂αBβ = 0. The solutions of these equations
divide into three distinct classes.

6.1. Class 1: B1 = 0 and / or B2 = 0

If one or other of the Ba vanishes we can, without loss of generality, by interchange of x and
y, choose B1 = 0 and leave B2 to be freely specified (we are free to choose B2 = 0 if we
wish). Except when B2 = B2(x), these solutions will generically require the 2-surface given
by t = const to be non-flat. The solution of equations (76)–(79) is simple in this case. We
find C = C(x),D = D(x) and

W(x, y) =
∫ x

x0

dξ C(ξ)
∂L(ξ, y)

∂ξ
+ f (y), (80)

V (x, y) =
∫ x

x0

dξD(ξ)
∂L(ξ, y)

∂ξ
+ g(y), (81)

B2 = −∂L(x, y)

∂x
. (82)

We determine the energy density of the dust, from equation (71), to be

κρ = −∂2
xL(x, y) + (W(x, y) ch�(t) + �V (x, y) ch�(t))(C(x) ch�(t) + �D(x) sh�(t)

(C(x) sh�(t) + D(x) ch�(t))(W(x, y) sh�(t) + V (x, y) ch�(t))
− �,

and the metric is

ds2 = −dt2 + (C(x) sh�(t) + D(x) ch�(t))2 dx2 + (W(x, y) sh�(t) + V (x, y) ch�(t))2 dy2.

This is equivalent to the ∂V0/∂y = 0 solution found by Kriele [23]. As stated above, the limit
B2 → 0 is well defined in this case.

6.2. Class 2: B1 �= 0, B2 �= 0 and C/W �= D/V

It will be seen that class 1 solutions do not emerge as the B1 = 0 limit of the solution for
B1 and B2 non-zero. The solution of the latter case is more complicated. The condition
C/W �= D/V ensures that we do not have ḣαβ ∝ hαβ , and so our coordinate choice is unique
(up to rescalings of x and y).

As discussed above, solutions of this class are defined by two free functions of (x, y);
to aid finding the solution we choose these to be C(x, y) and D(x, y). By combining
equations (76)–(79), we can solve for B1: we solve this equation for B1:

ln B1 := φ(x, y) + ln S(y) =
∫ x

x0

dξ
C∂ξ∂yD − D∂ξ∂yC

C∂yD − D∂yC
+ ln S(y),

where S(y) and x0 are arbitrary. Equations (76) and (77) can now be used to specify W

and V :

W = e−φ∂yC/S(y), (83)

V = e−φ∂yD/S(y). (84)

Finally, we check that these forms of C,D,W and V define a unique B2 via equations (78)
and (79). We find that they do, and that B2 is given by

B2 = e−φ

S(y)

(
∂yC∂x∂yD − ∂yD∂x∂yC

C∂yD − D∂yC

)
.
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For D �= 0, we may write these in a slightly more familiar form by defining D = eν(x,y) and
C = F(x, y) eν(x,y). We then have

φ = ln F,y + ν + α, (85)

α(x, y) :=
∫ x

x0

dξ
F,ξ ν,y

F,y

. (86)

Thus, B1 = S(y)F,y eν+α and

W = e−ν(F eν),y e−α

F,yS(y)
, V = ν,y eα

F,yS(y)
,

and

B2 = e−α−ν(ν,y)
2

S(y)(F,y)2
∂x

(
F +

F,y

ν,y

)
.

The metric is therefore given by

ds2 = −dt2 + R2(x, y, t) e2ν(x,y) dx2 +
e−2(ν+α)((R(x, y, t) eν(x,y)),y)

2

S2(y)F 2
,y(x, y)

dy2,

where R(x, y, t) = ch�t + F(x, y) sh�t , and the functions F(x, y) and ν(x, y) are arbitrary.
Generalized Szekeres-like solutions emerge in the limit F,x = 0. The requirement
C/W �= D/V translates to eν �= H(x)(F (x, y) − 1) for some H(x). If this requirement
does not hold then, although our solution is still valid, the coordinate system is not uniquely
specified and we may transform to a conformal frame in which the solution is simplified; we
deem such solutions to be of class 3 and deal with them in the following subsection. The
energy density for the class 2 solutions is now given by a rather complicated expression:

κρ = E(x, y;�)

R(R,y + Rν,y)
, (87)

where

E(x, y,�) = e−2ν
[
ν,xyν,x − ν,xxy − F,x

/
F 2

,y

(
ν,xν

2
,yF,y + F,xν

3
,y − 3ν,xyν,yF,y

)
−F,xy

/
F 2

,y

(
ν,yν,xF,y + 3ν2

,yF,x + 2F,xyν,y − 2ν,xyF,y

)
+ F,xxν

2
,y

/
F,y + F,xxyν,y/F,y

]
+ 1

2 e−2ν(K e2ν),y (88)

with K(x, y, t) = Ṙ2 − �R2 − e2α(SF,y)
2. Generalized Szekeres solutions [27, 28]

emerge in the limit F,x = 0 and the 2 + 1 Szekeres solutions [44] themselves emerge when
e−ν = A(y)x2 + 2B(y)x + C(y).

6.3. Class 3: B1 �= 0, B2 �= 0 and C/W = D/V

In this case ḣαβ ∝ hαβ and so we may, as mentioned above, transform to a conformal gauge
where both the metric and its time derivative are proportional to δab. In this case, without loss
of generality, D = V = eφ(x,y) and C = W = µ eφ(x,y), B1 = ∂yφ and B2 = −∂xφ; φ is
arbitrary and µ is a constant. The metric then becomes

ds2 = −dt2 + e2φ(µ sh�(t) + ch�(t))2(dx2 + dy2)

and the energy density is

κρ = −e−2φ∇2φ(x, y) + (µ ch�(t) + � sh�(t))2

(µ sh�(t) + ch�(t))2
− �,

where ∇2 = ∂2
x + ∂2

y . The FRW solution emerges from the case where e−2φ∇2φ(x, y) =
const. This is also the only homogeneous limit of this class of solutions.
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7. Cosmological solutions with non-comoving dust

In this section we will extend our discussion to include the remaining degrees of freedom
in the cosmological evolution of dust. We consider non-comoving fluid motions and seek a
new class of non-comoving solutions where only one of the spatial velocity components is
non-zero; without loss of generality, we will take this to be the x-component. We will initially
work with � = 0, however we shall present a simple transformation that allows us to map
� = 0 solutions into � �= 0 ones.

First, we use some of the remaining gauge and coordinate freedom to set E1̂
2 = 0.

With this choice we have Ux̂ = sinh θ �= 0, U2̂ = 0 and u0̂ = cosh θ . This is equivalent
to demanding that we choose our local frame field so that the y-component of the fluid
velocity vanishes. As before, we have that Ėαi = εijA

j
α , and the relation η̃αβεijA

i
αE

j

β = 0

tells us that Ė2̂
2

/
E2̂

2 = Ė2̂
1

/
E2̂

1 , which implies E2̂
1 = A(x, y)E2̂

2 . Hence, we find that

E1̂
1 = C(x, y)t + D(x, y). The remaining (independent) equations to be solved now read

Ë2̂
2 = −κρ sinh2 θE2̂

2 , (89)

Ḃ2 = κρ cosh θ sinh θE2̂
2 , (90)

B1 = A(x, y)By(x, y, t) + f (x, y), (91)

∂y(C(x, y)t + D(x, y)) = f (x, y)E2̂
2 , (92)

(∂x − A,y − A∂y)E
2̂
2 = −B2(C(x, y)t + D(x, y)), (93)

κρ cosh2 θ(C(x, y)t + D(x, y))E2̂
2 = (∂x − A,y − A∂y)By − ∂yf (x, y) + C(x, y)Ė2̂

2 . (94)

By taking two time derivatives of equation (92), we can see that we must have f (x, y) = 0,
which in turn implies C = C(x) and D = D(x). This is therefore a generalization of the
class 1 comoving solutions found in the last section to the case of non-zero vorticity. In the
system of equations above, we have written down two evolution equations and two consistency
equations, and by combining the evolution equation for Bα with the time derivative of the first
of the consistency equations we arrive at a third condition. On any initial surface, we must
specify six functions of x and y: A(x, y), ρ, θ , E2̂

2 and Ė2̂
2 , and B2, and two functions of

x: C(x) and D(x). Given the assumed form of the metric, the only coordinate freedom we
have left is y → Y (x, y), x → X(x) and t → t + t0. At some initial instant we can always
use the residual coordinate freedom to set A(x, y) = 0. Without loss of generality, therefore,
we set A(x, y) = 0. This leaves five free functions and three consistency equations. In total,
we are left with two free functions that can be freely specified on the initial surface, one less
than required for the general solution of the Einstein equations in accord with our setting one
of the 2-velocity components equal to zero.

We shall define new variables: X = κρ cosh2 θ, Y = tanh θ, B2 = L(x, y, ) and
E2̂

2 = M(x, y, t). With these definitions the equations become

M̈ = −XY 2M, (95)

L̇ = XYM, (96)

∂xM = −L(C(x)t + D(x)), (97)

X(C(x)t + D(x))M = ∂xL + C(x)Ṁ. (98)
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When C �= 0 we can, at least locally, set C = 1, without loss of generality, by using the freedom
to redefine the x coordinate. In this case, we can combine the above equations (95)–(98) into
a single second-order, nonlinear, PDE for M(x, y, t):(

∂t

(
∂xM

t + D

))2

(t + D)2 =
(

(t + D)∂x

(
∂xM

t + D

)
− (t + D)∂tM

)
∂2
t M. (99)

We note that via the coordinate transformation (t, x) → (t ′, x ′), defined below, we can,
without loss of generality, set D(x) = 0 and preserve all the assumed properties of the metric
and matter content.

t ′ cosh x ′ = t cosh x +
∫ x

dξD(ξ) sinh ξ,

t ′ sinh x ′ = t sinh x +
∫ x

dξD(ξ) cosh ξ.

Hereafter we fix our coordinate system by taking D = 0.

7.1. General solution for dust with one non-comoving velocity

By the coordinate transform defined above we set D = 0 and solve the resulting system of
equations. The only subcase not explicitly covered by this solution will be that when C = 0 (in
which case we can take D = 1 w.l.o.g.). We shall see later through the class of solutions with
C �= 0 is, up to a coordinate transform, equivalent to the class of solutions with C = 0,D = 1.
We define a new variable Z = XM . The system of equations now reads

M̈ = −ZY 2, L̇ = ZY, ∂xM = −Lt, tZ = ∂xL + Ṁ.

By combining the first three equations we find Y = u,τ /u,x where τ = ln t and u = M,τ −M .
We then take the τ -derivative of the last equation to arrive at

∂τ� − Y∂x� = ∂xY − Y 2,

where we have defined e� = Zt . We now make a coordinate transform: (x, y) → (u,X),
where u = M,τ − M and X = x. With respect to these new coordinates, the above equation
becomes

(� − ln u,x),X = Y.

In terms of these new coordinates 1/Y = −τ,X. We can rewrite M̈ = −ZY 2 as u,τ e−τ =
−ZtY 2. Inserting this into the above equation leads to a simple equation for Y:

Y,X = Y 2 − 1,

which has solution Y = tanh(x−d(u, y)) with d(u, y) being a function of integration. Solving
the above equations we then find

e�

u,x

= Zt

u,x

= C(u, y) cosh(x − d(u, y)),

with C(u, y) being a function of integration. From u,τ e−τ = −ZtY 2 we have

e−τ = −C(u, y) sinh(x − d(u, y)).

It will be more straightforward to define F ′(u, y) := F,u = −C(u, y) cosh d(u, y) and
G′(u, y) := G,u = C(u, y) sinh d(u, y). It is clear that F ′2 − G′2 > 0. With respect to these
definitions the above equation for τ becomes

e−τ = 1

t
= F ′ sinh(x) + G′ cosh(x).
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From this, we find expressions for u,τ and u,x :

u,τ = − F ′ sinh(x) + G′ cosh(x)

F ′′ sinh(x) + G′′ cosh(x)
, u,x = − F ′ cosh(x) + G′ sinh(x)

F ′′ sinh(x) + G′′ cosh(x)
.

Finally, we find M := tP by solving eτ ∂τ (e−τM) = u to obtain

P = −u2

(
F

u

)′
sinh(x) − u2

(
G

u

)′
cosh(x) + H(x, y)

where the function H(x, y) is found, by insertion of M into tZ = ∂xL + Ṁ , to satisfy
H,xx = H . We can therefore absorb H(x, y) into the definition of F(u, y) and G(u, y),
and without loss of generality set H = 0. Thus, we have the final form of the general
non-comoving dust solution with Uy = 0:

M = −tu2

((
F

u

)′
sinh x +

(
G

u

)′
cosh x

)
, (100)

κρ = F ′2 − G′2

t2(F 2(u/F )′ sinh x + G2(u/G)′ cosh x)(F ′′ sinh x + G′′ cosh x)
, (101)

Y = F ′ sinh x + G′ cosh x

F ′ cosh x + G′ sinh x
, (102)

Ux = sign(Y )√
F ′2 − G′2 , (103)

U0 = |F ′ cosh x + G′ sinh x|√
F ′2 − G′2 . (104)

It is evident from the form of the density, ρ, that there is a curvature singularity at t = 0, and
that to ensure we always have positive energy densities we must have

(F 2(u/F )′ sinh x + G2(u/G)′ cosh x)(F ′′ sinh x + G′′ cosh x) � 0,

with curvature singularities appearing in the case of equality. We could, it should be noted,
rewrite this as the requirement that

(P 2)′

u
= (u2(F/u)′ sinh x + u2(G/u)′ cosh x)2′/u � 0,

with singularities forming in the case of equality. In the next subsection we shall consider the
form and nature of these singularities in more detail. We note that Ua∇au = 0. Using this
and equations (11), (101), (103) and (104) we obtain

� = 1√
F ′ − G′2

(
FG′ − GF ′

tP
+

F ′′G′ − G′′F ′

t (F ′′ sinh x + G′′ cosh x)

)
. (105)

We also find that the vorticity is found to be

ω2 = (G′
,yF

′2 − G′F ′F ′
,y)

2 − (G′2F ′
,y − F ′G′G′

,y)
2

(F ′2 − G′2)3t2P 2
. (106)

Using equation (105) we find

�̇ = − 1

F ′ − G′2

((
FG′ − GF ′

tP

)2

+

(
F ′′G′ − G′′F ′

t (F ′′ sinh x + G′′ cosh x)

)2
)

� 0.
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The shear, σ 2, is most straightforwardly calculated using Raychaudhuri’s equation (see
equation (20). We find

σ 2 = ω2 +
1

4(F ′2 − G′2)

(
FG′ − GF ′

tP
− F ′′G′ − G′′F ′

t (F ′′ sinh x + G′′ cosh x)

)2

.

In dust solutions where one of the non-comoving velocities is zero we must, therefore,
always have σ 2 � ω2. Static solutions with σ 2 = ω2 emerge when both FG′ = GF ′

and F ′G′ = G′′F ′ hold.

7.2. Classification of singularities

In addition to the standard cosmological singularity we have singularities in the dust density
(ρ → ∞) whenever

(P 2)′ = 0.

We can divide these (P 2)′ type singularities into two distinct classes: class A singularities
are where P �= 0, P ′ = 0, and class B are where P = 0. Class B singularities can be
thought of as shell-focusing singularities, in analogy to those in the Szekeres spacetimes. For
class A singularities, the volume element of the metric remains non-zero, whereas for class B
singularities it vanishes. From the definition of u, we have that u = 0 iff u,τ = 0 which will
not be the case at any finite time. Thus, at finite times, either u > 0 or u < 0.

Class A and B singularities are generically naked. This can be seen by considering
geodesics that move along y = const paths. The metric along dy = 0 is

ds2 = −dt2 + t2 dx2 = −t2 du dv,

where u = ln t + x and v = ln t − x. From any point, {t0, x0, y0}, we can therefore move
along an outward-moving null geodesic, defined by y = 0, v = const, that will reach null
infinity. It follows that there exist no black-hole horizons in this spacetime. We now consider
the strength of a singularity at the point {t0, x0, y0} = {u0, x0, y0}. We consider the quantity

� := RabK
aKb,

where Ka = dxa(k)/dk, and k ∈ (0, 1]. The singularity lies at k = 0. Since the Weyl tensor
vanishes in 2 + 1 dimensions, by propositions 1-4 of Clarke and Krolak [45], a necessary and
sufficient condition for the singularity to be strong in the sense of Krolak is that the following
integral does not converge as k → 0:

J (k) =
∫ k

1
dk′ �(k′).

If limk→0 J does not exist then the limiting focusing condition (LFC) is said to apply. If J (k)

does converge as k → 0 then the singularity is weak in the sense of Krolak, and also in the
sense of Tipler [46]. A necessary and sufficient condition for the singularity to be strong in
the sense of Tipler is that the strong LFC apply, i.e. that J (k) not be integrable in (0, 1]. If
J (k) is integrable in (0, 1] then the singularity is Tipler weak.

The equations describing null geodesics in this background are

Kt = P
t

, Kx = Q
t2

, Ky = l

t2M2
, (107)

P2 = Q2 +
l2

M2
, (108)

dP
dk

= ul2

t3P 3
, (109)
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dQ
dk

= − (F ′ cosh x + G′ sinh x)l2

t2P 3
, (110)

dl

dk
= − (F,y sinh x + G,y cosh x)l2

t2P 3
. (111)

We can see that simple solutions can be found if we take l = 0 = Ky . In these cases
P = ±Q = const. Therefore, along these null geodesics we have

t =
√

t2
0 + 2Pk, x = x0 ± 1

2 ln
(
1 + 2Pk

/
t2
0

)
.

Outward-moving null geodesics take the + sign, while inward moving ones correspond to the
− sign. We shall refer to these geodesics as ‘radial’ null geodesics (RNG). We define the
quantity:

λ = (F ′ cosh x + G′ sinh x)(1 ± Y ).

For finite t > 0, λ is both finite and non-zero. Along RNGs we have

du

dk
= ∓Pλu

t2P ′ , (112)

dP

dk
= ∓P

t2
(λu − P,x), (113)

dP ′

dk
= ∓ P

t2P ′ (λuP ′′ − P ′P ′
,x). (114)

Proposition. The LFC does not apply to RNGs terminating on class A singularities.

Proof. Consider the quantity � for class A singularities:

� = λ2(−u)P2

PP ′t4
.

Using 1/P ′ = ∓t2/(Pλu)(du/dk) we have

� = ∓ λP
P t2

du

dk
.

The limit limk→0 λP/P t2 exists for class A singularities and du/dk is integrable on (0,∞),
and so � is integrable on the same region. Therefore by propositions 4 and 6 of [45] the
LFC does not apply to RNGs for class A singularities. Class A singularities are therefore
gravitationally weak. �

Proposition. The LFC applies along RNGs terminating on class B singularities provided
limk→0 1/P ′ �= 0, but the strong LFC does not apply.

Proof. It is a sufficient condition for the LFC to hold that

lim
k→0

k� = lim
k→0

kλ2(−u)P2

PP ′t4
�= 0.

We note that, for t ∈ (0,∞):

λ0u0 − P,x |0 = F(u0, y0) cosh x0 + G(u0, y0) sinh x0 ± u0/t0 �= 0,

and is finite. By l’Hôpital’s rule and equation (113), the limit limk→0 k/P must therefore
exist and be non-zero. Thus limk→0 k� = 0 iff limk→0 1/P ′ = 0 or equivalently iff
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limk→0 du/dk = 0. The LFC applies along all RNGs where limk→0 du/dk �= 0. By
propositions 1 and 2 of [45] the strong LFC does not apply if the integral

J (k) :=
∫ k

1
dk′

∫ k′

1
dk′′ �(k′′)

converges as k → 0. Using integration by parts we see that this is equivalent to the condition
that

∫ k

1 dk′ k′�(k′) converges. Using 1/P ′ = ∓t2/(Pλu)(du/dk) we have

� = ∓ k

P

λP
t2

du

dk
.

As shown above, the limit limk→0 k/P exists and du/dk is integrable on (0, 1], therefore
k�(k) is integrable on (0, 1] and the J (k) converges, and the strong LFC does not apply. �

7.3. Asymptotic behaviour

We consider next the asymptotics of our class of non-comoving dust cosmologies and find
the criteria for them to become homogeneous at late times. We note that as t → ∞, we have
F ′ sinh x + G′ cosh x → 0+. We assume that as t → ∞, the quantity F ′′ sinh x + G′′ cosh x

does not vanish. We also assume that the limit limt→∞ u = u0 exists and that all functions
of u have well-defined Taylor series expansions about u0. We must now consider two distinct
cases: the first where limt→∞(F ′2 − G′2) �= 0, and the second where this limit vanishes. In
the first case we must have UxU

x ∼ (
F ′2

0 − G′2
0

)/
t2 and so limt→∞ Y = 0. At late times

we therefore expect to recover, at lowest order in 1/t , a comoving spacetime. Physically,
this asymptotic time evolution just reflects simple momentum and angular momentum
conservation. An expanding area of radius R, velocity U and mass M ∝ ρR2 will evolve so
that MV R is constant; hence U ∝ √

UxUx ∝ R−1 ∝ t−1.
If limt→∞(F ′2 − G′2) = 0 then we have that F ′ sinh x + G′ cosh x → 0+ implies

F ′ cosh x + G′ sinh x → 0 also; hence we must have limt→∞ F ′ = limt→∞ G′ = 0 and
so limt→∞ Y = tanh(x + θ(y)) where tanh(θ) = limt→∞ G′/F ′ = G′′(u0, y)/F ′′(u0, y);
this will be solvable for θ because of the requirement that F ′2 > G′2 for all finite t. In this
second case we should therefore expect to recover an asymptotically comoving spacetime only
approximately in some region about x + θ(y) = 0.

Consider spacetimes where limt→∞(F ′2 − G′2) �= 0; we find

t2κρ ∼ F ′2
0 − G′2

0

η0(x, y)λ0(x, y)

(
1 +

u

tη0
− ν0

tλ2
0

+
2σ0

λ0t
+ O(t2)

)
,

where the subscript 0 means that a quantity is evaluated at u = u0(x, y), and where

η0(x, y) = F0(x, y) sinh x + G0(x, y) cosh x,

λ0(x, y) = F ′′
0 (x, y) sinh x + G′′

0(x, y) cosh x,

ν0(x, y) = F ′′′
0 (x, y) sinh x + G′′′

0 (y) cosh x,

σ0(y) = F ′′
0 (x, y)F ′

0(x, y) − G′′
0(x, y)G′

0(x, y)

F ′2
0 (x, y) − G′2

0 (x, y)
.

We can see that for such a spacetime to tend to homogeneity at late time, we need

∂α

F ′2
0 (x, y) − G′2

0 (x, y)

η0(x, y)λ0(x, y)
= 0,

where α stands for x or y. We shall give an example of a class of spacetimes where this
condition holds below.
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In the second of the two cases F ′2
0 − G′2

0 = 0, and asymptotically we then find that either

κρ ∼ cosh θ(y)

t4 sinh3(x + θ(y))F ′′
0 η0(x, y)

+ O(t−5),

if η0(x, y) �= 0, where η0 is as defined above, or otherwise

κρ ∼ cosh θ(y)

t3(−u0(x, y)) sinh3(x + θ(y))F ′′
0 η0(x, y)

+ O(t−4),

if η0 = 0 and u0 �= 0. If η0 = u0 = 0 then to leading order the energy density is not positive
at late times. We see that this class of solutions does not have an isotropic and homogeneous
FRW limit. We can also see that to leading order it seems that we cannot avoid having a
timelike singularity at x = −θ(y) at late times in this class of solutions. The early-time
behaviour of both classes of solutions depends strongly on the choice of the free functions
F(u, y) and G(u, y). We shall consider two examples which clearly illustrate the different
extremes of behaviour that are possible.

7.3.1. Example 1. Let us choose F(u, y) = H(y) sinh(u − s(y)) and G(u, y) = H(y)

cosh(u − s(y)). We have that

1

t
= H(y) sinh(x + s(y) − u),

P = cosh(x + u − s(y)) − u sinh(x + u − s(y))

= 1

t

(√
1 + H 2t2 − sinh−1(1/Ht) + x + s(y)

)
,

κρ = H 2(y)

t2 cosh(x + s(y) − u)P (t, x, y)

= H 2(y)

t2P(t, x, y)

(
1 +

1

t2H 2

)−1/2

,

UxU
x = 1/H 2t2.

By the analysis of the previous section, this spacetime has Krolak-strong singularities at
x = x0(y, t), where x0(y, t) = sinh−1 1

Ht
−

√
1 + H 2t2 − s(y). We note that if H > 0 then

κρ > 0 for all x > x0(y, t); if H < 0 then κρ > 0 in the region x < x0(y, t); in either case
we must restrict ourselves only to the region where κρ is positive. Since P vanishes at x = x0,
the circumference of the line defined by x = x0, t = 0 vanishes and this should be properly
considered to be a single point in the x − y plane. This is a shell-focusing singularity. We
now consider the late- and early-time behaviour of this spacetime.

Early-time behaviour. ‘Early’ time now means t � 1/H , and we see that

P(x, y, t) ∼ t−1(1 + ln Ht/2 + x + s(y) + O((H t)2))

and

κρ ∼ H(y)

(1 + ln Ht/2 + x + s(y))
((1 + O(H 2t2)).

We can see from this expression that we can see that we will not be able to reach the point
t = 0 since this leading order term will be become singular at t = t0(x, y) > 0 where

t0 = (2/H) exp(−x − s(y) − 1) > 0.
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We should therefore interpret t = t0(x, y) as being the true initial singularity—interestingly,
we note that depending on our choice of s(y), the slice t = t0(x, y) can be either spacelike or
timelike. As t → t0, ρ diverges as (t − t0)

−1, which is weaker than that we would otherwise
expect had the fluid not been rotating (i.e. as 1/(t − t0)

2). This singularity is of P = 0 type,
and so is Krolak strong and Tipler weak.

Late-time behaviour. ‘Late’ time is H 2t2 � 1. We can see that

P(x, y, t) ∼ 1 + (x + s(y))/Ht − 1
2 (H t)−2 + O((H t)−3)

and

κρ ∼ 1

t2(1 + (x + s(y))/Ht)
(1 + O((H t)−3)).

At late times (for fixed x and y), this subclass of spacetimes tends to a FRW limit:

κρ ∼ 1

t2
.

7.3.2. Example 2. A second class of illustrative spacetimes can be found by taking
F(u, y) = C(u) cosh(θ(y)) and G(u, y) = C(u) sinh(θ(y)). At late times, C ′(u) → 0
and so these solutions fall into the F ′2

0 − G′2
0 = 0 class mentioned above. The reciprocal time

is given by

1

t
= C ′(u) sinh(x + θ(y)),

and

P = (C(u) − uC ′(u)) sinh(x + θ(y)).

It is also straightforward to check that the expansion scalar vanishes for this example, � = 0,
and so we must have the shear equal to the vorticity: σ 2 = ω2. Let us take, as an example,
C(u) = A0 + (C0 − A0) cosh(u − u0), so sinh(u − u0) = cosec(x + θ(y))/(C0 − A0)t . We
define the quantity V := (C0 − A0)t sinh(x + θ) and determine the early- and late-time
asymptotic behaviours.

Early-time behaviour. At early times, that is |V | � 1 for fixed x and y, we have

u ∼ −ln |V/2| + u0 + O(V 2)

and

P ∼
(

A0 +
1

2

)
sinh(x + θ(y)) +

1

t
ln|V/2| + (1 − u0)/t + O(V ).

At early times, we there find that the energy density behaves as

κρ = 1

t2 sinh2(x + θ(y))
[(ln|V/2| − (1 − u0) + t (2A0 + 1) sinh(x + θ(y)) + O(V 2))]−1.

Similar to the previous example it seems as if we will not reach at the point t = 0, as we
will encountered a singularity at t = t0 > 0 where t0 > 0 is the value of t for which the
quantity inside [· · ·] in the above equation vanishes. This singularity is of P = 0 type and
so is Krolak stronger and Tipler weak. As t → t0 we will again have ρ ∝ (t − t0)

−1. As
in example 1 the effect of rotation has been to weaken the strength of the initial singularity.
It is important to note that t = t0(x, y) is not necessarily spacelike. In section 7.5.2 we
shall describe an example where there is no initial singularity but only a timelike P = 0 type
‘central’ singularity.
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Late-time behaviour. At late times, |V | � 1 we have u ∼ u0 + V −1 + O(1/V 2) and
C(u) ∼ C0 + V −2(C0 − A0)/2 + O(1/V 4). Thus, we have

P ∼ C0 sinh(x + θ(y)) − u0/t − (1/2V t) + O(1/V 3).

We find for the energy density, assuming C0 �= 0 that

κρ ∼ 1

t4(C0 − A0)C0 sinh3(x + θ)
(1 + u0/(C0 sinh(x + θ)t)) + O(t−5).

In the case C0 = 0, we have

κρ ∼ 1

t3(C0 − A0)(−u0) sinh2(x + θ)
+ O(t−4).

7.4. A non-vanishing cosmological constant

Upon the inclusion of a cosmological constant term into the case with one non-zero, non-
comoving velocity in the x-direction, we find Ex̂

x = C(x) sh�(t)+D(x) ch�(t) where sh�(t) =
�−1/2 sinh(�1/2t) and ch�(t) = cosh(�1/2t). As in the � = 0 case, we can set both E

ŷ
x and Ex̂

y

to zero. We shall define our variables as before: X = κρ cosh2 θ, Y = tanh θ, By = L(x, y, )

and E
ŷ
y = M(x, y, t), Z = XM . With these definitions the equations become

M̈ − �M = −ZY 2

L̇ = ZY,

∂xM = −L(C(x) sh�(t) + D(x) ch�(t)),

Z(C(x) sh�(t) + D(x) ch�(t)) = ∂xL + (C(x) ch�(t) + �D(x) sh�(t)) Ṁ

− (C(x) sh�(t) + D(x) ch�(t))�M.

When � �= 0, we cannot always set D = 0 whenever C �= 0 without loss of generality;
indeed it should be noted that those cases where |D| > |C|/√� are qualitatively different
where the opposite is true. The former case will generically exhibit a bounce rather than an
initial singularity. If D,x = 0, however, then we can, without loss of generality, redefine
our x and t coordinates so that C = 1 and D = 0. We now make the redefinitions T =
sh�(t)/ch�(t) = �−1/2 tanh(�1/2t), M̃ = M/ch�(t), Z̃ = Z ch�(t), and Ỹ = Y ch�(t).
The system {M̃, L, Z̃, Ỹ ; T } then satisfies the � = 0 equations for {M,L,Z, Y ; T }.

7.4.1. Generalization of the D,x = 0 solution to � �= 0. We found the general solution
for the D = 0 and � = 0 case above. We have just seen that such solutions can be easily
transformed into � �= 0 solutions. We have

M = sh�(t)P (u, x, y),

where, as before,

P(u, x, y) = −u2

((
F

u

)′
sinh x +

(
G

u

)′
cosh x

)
.

The definition of u in terms of {t, x, y} changes to

1

T
= ch�(t)

sh�(t)
= F ′(u, y) sinh x + G′(u, y) cosh x.

The energy density is given by κρ = Z(1 − Y 2)/M . Using our transformation, we have
κρ = Z̃

(
1 − ch−2

� (t)Ỹ
)/

ch2
�(t)M̃ , and so
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κρ = F ′2 − G′2 + �

ch2
�(t)T 2(F 2(u/F )′ sinh x + G2(u/G)′ cosh x)(F ′′ sinh x + G′′ cosh x)

, (115)

Y = 1

ch�(t)

F ′ sinh x + G′ cosh x

F ′ cosh x + G′ sinh x
. (116)

At late times T → 1√
�

, and by applying the � = 0 asymptotic analysis we can see that all

solutions at late times have energy densities that die off in time as e−2
√

�t , and in all cases
Y → 0 as t → ∞. Thus, at late times all such solutions become comoving iff � > 0.

7.5. New coordinates for � = 0 case and nature of t = 0

When � = 0 the metric of spacetime with C = 1,D = 0 is

ds2 = −dt2 + t2 dx2 + t2P 2 dy2.

The solutions are equivalent to all C = 0,D = 1, solutions under a coordinate transform:

t → T = t cosh x, x → X = t sinh x.

With these new coordinates it is easier to analyse what occurs when t = 0. The metric in
{T ,X} coordinates is

ds2 = −dT 2 + dX2 + M2 dy2,

where

M = F(u, y)X + G(u, y)T − u(T ,X, y), 1 = F ′(u, y)X + G′(u, y)T .

The energy density is given by

κρ = F ′2 − G′2

(FX + GT − u)(F ′′X + G′′T )
.

The line t = 0 corresponds to T = ±X, where t → 0, x → x0, x0 finite, is T = X =
0, X/Y = tanh x0. This is not necessarily a singularity.

Consider the behaviour near a point where T = T0 = ±X and T0 finite; we have
1/T0 = ±F ′(u0, y) + G′(u0, y) and so κρ < ∞ provided ±F(u0, y) + G(u + 0, y) �= u0/T0

and ±F ′′(u0, y) + G′′(u0, y) �= 0. These conditions together simply require ±F(u, y) +
G(u, y) �= u/T0 + o((u − u0)

2) as u → u0. We also require −∞ < ∓F ′(u0, y) +
G′(u0, y) < ∞. For most choices of F(u, y) and G(u, y) the line T = ±X �= 0 will,
therefore, be non-singular. As we approaches T = X = 0, we must have that G′2(u, y) → ∞,
and since F ′2 > G′2 we conclude that F ′2 must also blow up at least as quickly. For many
choices of F(u, y) and G(u, y), we fill find that this corresponds to u → ±∞, and so
before we reach the point T = X = 0 a P = 0 type singularity is encountered, where
u = FX + GT .

For now we assume that we can reach the point X = T = 0 by moving along some non-
spacelike geodesic. We assume that at X = T = 0, u = u0 and that u0 is finite. Near u = u0

we assume that the blow up in F ′ and G′ is due to a pole where F(u, y) ∼ A + C(u − u0)
−m

and G(u, y) ∼ B + D(u − u0)
n, with m � n > −1,m, n �= 0, and m2C2 > n2D2 �= 0. So,

we have

κρ ∼ m2C2 − n2D2(u − u0)
2(m−n)

ϒ(X, T , u)
,

where

ϒ(X, T , u) = (CX + D(u − u0)
m−nT + (AX + BT − u0)(u − u0)

m)

× (m(m + 1)CX + n(n + 1)D(u − u0)
m−nT ).
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Figure 1. Penrose diagram for the spacetime in example 1. We have taken y fixed and suppressed
the y-axis. The singularities are at P = 0 and P ′ = 0. The line t = 0 is also drawn.

If m > 0 then the energy density behaves as

κρ ∼ m2C2 − n2D2(u − u0)
2(m−n)

(CX + D(u − u0)m−nT )(m(m + 1)CX + n(n + 1)D(u − u0)m−nT )

which clearly blows up as T ,X → 0. If −1 < m < 0 then κρ ∝ (u − u0)
mX−1, which again

is manifestly singular. Thus T = X = 0 is, in general, a curvature singularity. Similarly, if
u → ±∞ as one approaches T = X = 0 and F(u, y) ∼ A + Dum,G ∼ A + Dun,m � n �
1,m2C2 � n2D2 �= 0, then

κρ ∼ m2C2 − n2D2u2(n−m)

(CX + Dun−mT )(m(m − 1)CX + n(n − 1)Dun−mT )
,

which is manifestly singular at X = T = 0. It is evident from these asymptotics that the LFC
applies along RNGs terminating at the singularity, but the SFC does not apply.

As previously stated, it is often the case that the point T = X = 0 is not reachable
since it lies behind a P = 0 singularity. To illustrate this, and to understand better the nature
of these spacetimes we construct the Penrose diagrams for two specific choices of F(u, y)

and G(u, y).

7.5.1. Example 1. We choose F(u, y) = H(y) sinh(u − s(y)),G(u, y) = −H(y) cosh(u −
s(y)). This gives

u = s(y) + ln(H(y)(X + T )) − ln
(
1 +

√
1 + H 2(y)(T 2 − X2)

)
,

and

κρ = H 2(y)
[(√

1 + H 2(y)(T 2 − X2) + u(T ,X, y)
)√

1 + H 2(y)(T 2 − X2)
]−1

.

There is a spacelike P = 0, Krolak-strong and Tipler-weak singularity when

s(y) + ln(H(y)(X + T )) − ln
(
1 +

√
1 + H 2(y)(T 2 − X2)

)
+

√
1 + H 2(y)(T 2 − X2) = 0,

and a timelike P ′ = 0, Krolak-weak singularity at X2 = 1/H 2(y)+T 2. The point X = T = 0
lies beyond the boundary of this spacetime. This space is homogeneous at late times:
κρ ∼ 1/T 2, for fixed y and X. We construct the Penrose diagram of this spacetime for
fixed y in figure 1. We can see from figure 1 that all past-directed timelike geodesics terminate
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Figure 2. Penrose diagram for the spacetime in example 2. We have taken y fixed and suppressed
the y-axis. The only singularity is of P = 0 type. The lines t = 0 and T = 0 are also drawn.

on a singularity, either on the ‘big-bang’, singularity at P = 0, or on the timelike P ′ = 0
line. Although we have labelled the P = 0 singularity as a ‘big bang’ it is important to note
that it need not be everywhere spacelike, and different choices of H(y) and s(y) can easily
result in it being timelike in some locality— that it appears spacelike in figure 1 is due to our
suppression of the y-axis. Since the singularity at P ′ = 0 is weak in the sense of Krolak it is,
in principle, possible to continue through it, however we shall not consider here what may lie
beyond it.

7.5.2. Example 2. We take F = C(y) eu cosh(θ(y)),G = C(y) eu sinh(θ(y)), so

u = −ln(C(y)X cosh(θ(y)) + C(y)T sinh(θ(y))).

In this case

κρ = C2(y) e2u

(1 − u)
,

and the only singularities are of P = 0 type and occur when u = 1. Unlike in the previous
example, the P = 0 singularity is timelike in this case, and can be thought of as a centre.
At late times the space is not homogeneous and κρ ∝ 1/(T 2 ln T ). As before, the point
T = X = 0 lies beyond the boundary of the spacetime. We construct the Penrose diagram
for this spacetime (at fixed y) in figure 2, from this it is clear that there is no ‘big-bang’ initial
singularity in this model. Indeed it can be easily checked that the expansion scalar, �, vanishes
in for this solution and so this is actually an example of an inhomogeneous static spacetime
with non-vanishing rotation and shear. Using the results of sections 3.2 and 3.3 we see that
we must have σ 2 = ω2 and R = 2κρ where

ω2 = θ2
,y

1 − u
.
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8. Scalar-field spacetimes

8.1. Solutions with one spacelike Killing vector

We now find the general solution to 2 + 1 gravity with a massless scalar-field source under
the assumption that there is one spacelike Killing vector. These solutions were first found by
Cavaglia in [47]. The metric takes the following form:

ds2 = −2A(u, v) du dv + C2(u, v) dy2.

We can transform this to t, x coordinates by defining u = (t + x)/
√

2, v = (t − x)/
√

2.
We assume a scalar field source, φ = φ(u, v), with the energy–momentum tensor:
Tab = ∂aφ∂bφ − 1

2gab(∂φ)2 where φ satisfies the conservation equation

�φ = 0.

With these prescriptions the (yu) and (yv) components of Einstein equations are satisfied
trivially, and the (yy) component requires C,uv = 0, the general solution of which is

C(u, v) = f (v) + g(u).

We also define D(u, v) = f (v) − g(u), and move from (u, v) to (C,D) coordinates. By
making different choices of f (v) and g(u) we can arrange that either ∂aC is spacelike and
∂aD is timelike, or ∂aD is spacelike and ∂aC is timelike, or both ∂aC and ∂aD are null. In
terms of C and D the φ wave equation reads

φ,DD = φ,CC + φ,C/C.

This is just the wave equation in cylindrical polar coordinates with axial and azimuthal
symmetry (with D playing the role of the usual time coordinate and C of the radial
coordinate). We can solve this in terms of Bessel functions.

φ =
∫ ∞

−∞
dk A(k)(cos(

√
kD) + B(k) sin(

√
kD))(J0(

√
kC) + E(k)Y0(

√
kC)),

where A(k), B(k), E(k) ∈ C are arbitrary and J0 and Y0 are zero-order Bessel functions of
the first and second kind, respectively. Finally, we solve the equations for A to give

ln

(
A

f ′(v)g′(u)

)
= 2C

∫ D

D0(C)

dD′ φ,Cφ,D + F(C),

where

F(C) =
∫ C

C0

dC ′ C ′(φ2
,C + φ2

,D

)∣∣
D=D0(C ′).

Boundary conditions for φ are need to specify the solution further.

8.2. PP-wave spacetimes

In (2 + 1) spacetimes the metric for a scalar-field PP-wave spacetime can be written in the
form:

ds2 = H(u, x) du2 + 2 du dv + dx2.

The Einstein equations read Ruu = −1/2H,xx = κ(φ,u)
2 and Rab = 0 otherwise; this implies

φ = φ(u), where φ(u) is arbitrary. Solving for H, we find

H = A(u) + B(u)x − κ(φ′(u))2x2,
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where A(u) and B(u) can both be freely specified. It can be checked that in (2+1) dimensions
these are the only perfect-fluid solutions (they are equivalent to an irrotational p = ρ fluid)
that are compatible with the PP-wave metric ansatz given above. Indeed, we find that the only
permitted choices of the energy–momentum tensor must satisfy Tuu �= HT and Tab = T gab

otherwise. We find similar PP-wave solutions by considering the (2 + 1) Einstein–Maxwell
equations. Up to gauge transformations, all the solutions are of the form Au = Av = 0, and
Ax = φ(u) for the electromagnetic potential, with φ(u) being arbitrary and H(u, x) as given
above. The only non-vanishing components of Fab are Fux = −Fxu = φ,u(u).

9. Discussion

Whereas the general cosmological solutions of the (3 + 1)-dimensional Einstein equations are
intractably complicated and likely dominated by non-integrability, the structure of the theory
in 2 + 1 offers the possibility of making considerable progress towards finding the general
solution in several interesting situations. This fact, together with our current perception that
quantum field theory fits more naturally in three rather than four dimensions, has motivated
the study of Einstein’s theory in three-dimensional spacetimes.

In this paper we employed covariant and first-order formalism techniques to study the
properties of general relativity in three dimensions. The covariant approach provided an
irreducible decomposition of the relativistic equations and allowed for a mathematically
compact and physically transparent description of their properties. Using this information we
reviewed the kinematical, dynamical and geometrical features of three-dimensional spacetimes
and identified the special features that distinguish them from the standard 3 + 1 models. These
include the key role of the isotropic pressure as the sole contributor to the gravitational mass
of the system and the fact that vorticity never increases with time. We also reviewed the
3D analogues of the spatially homogeneous and isotropic FRW models and investigated their
stability against linear perturbations. We found that, unlike their conventional counterparts,
dust-dominated 3D homogeneous and isotropic spacetimes are stable under shear and vorticity
distortions and (neutrally) stable against disturbances in their density distribution. The latter
reflects the vanishing of the total gravitational mass in three-dimensional dust models, which
ensures the absence of linear Jeans-type instabilities. In addition to isotropic spacetimes,
we also looked at three-dimensional anisotropic models providing Kasner-like solutions for
the case of pressure-free matter and generalizing Gödel’s universe to three dimensions. The
covariant formalism allowed us to carry out these analyses by a study of the kinematic variables
characterizing the expansion of the universe. The absence of both electric and magnetic Weyl
curvature components in three dimensions considerably simplifies the analysis. We then
specialized further to the case of a pressureless matter source. In addition to being physically
realistic, this assumption produces a significant further simplification of the cosmological field
equations in three-dimensional spacetimes. We were able to find the general cosmological
solutions of the theory in the case where the matter was comoving. No symmetry assumptions
were made. We then considered the fully general pressureless fluid system with non-comoving
velocities. We were able to solve the system in the case where one spatial velocity component
was zero whilst the other was non-zero. This allowed us to carry out an asymptotic study, close
to and far from singularities, of an inhomogeneous cosmology with rotation, expansion and
shear. All the singularities arising in these solutions were classified using the different criteria
of strength introduced by Krolak and Tipler. We were able to provide a simple transformation
which generalized all the solutions we found with vanishing cosmological constant into new
solutions with non-zero cosmological constant. Finally, we considered scalar-field metric with
one Killing vector and found all the PP-wave solutions in (2 + 1)-dimensional universes.
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These investigations suggestion a number of problems for further study. Exact solutions
in the cases with non-zero isotropic and anisotropic pressure remain to be investigated. In
the case of zero pressure, we have analysed the problem of the general solution of the three-
dimensional Einstein equations into a well-defined system of partial differential equations.
We have solved for the case with comoving velocities and a single non-comoving velocity but
the problem remains to find the general solution of the equations when both non-comoving
fluid velocities are present.
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[40] Ozsváth I and Schücking E 2003 Am. J. Phys. 71 801

http://dx.doi.org/10.1007/BF00762914
http://dx.doi.org/10.1088/0264-9381/3/4/010
http://dx.doi.org/10.1007/BF00762539
http://dx.doi.org/10.1016/0003-4916(84)90085-X
http://dx.doi.org/10.1016/0003-4916(82)90164-6
http://dx.doi.org/10.1088/0264-9381/2/3/003
http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://dx.doi.org/10.1016/0550-3213(76)90443-0
http://dx.doi.org/10.1007/BF00762340
http://dx.doi.org/10.1007/BF00669791
http://dx.doi.org/10.1103/PhysRevD.67.064014
http://dx.doi.org/10.1103/PhysRevLett.85.3758
http://dx.doi.org/10.1103/PhysRevD.24.2082
http://dx.doi.org/10.1086/162808
http://dx.doi.org/10.1038/310391a0
http://dx.doi.org/10.1103/PhysRevD.31.3288
http://dx.doi.org/10.1119/1.11057
http://dx.doi.org/10.1103/PhysRevD.68.124022
http://dx.doi.org/10.1103/PhysRevD.59.044012
http://dx.doi.org/10.1088/0264-9381/14/1/016
http://dx.doi.org/10.1103/PhysRevD.47.3319
http://dx.doi.org/10.1088/0264-9381/22/16/007
http://dx.doi.org/10.1016/0550-3213(88)90143-5
http://dx.doi.org/10.1007/BF01608547
http://dx.doi.org/10.1016/0375-9601(84)90467-5
http://dx.doi.org/10.1023/A:1021199821507
http://dx.doi.org/10.1103/PhysRevD.40.1804
http://dx.doi.org/10.1103/RevModPhys.21.447
http://dx.doi.org/10.1119/1.1574320


Cosmology in three dimensions: steps towards the general solution 5321

[41] Hawking S W and Ellis G F R 1973 The Large Scale Structure of Spacetime (Cambridge: Cambridge University
Press)

[42] Barrow J D and Tsagas C G 2004 Class. Quantum Grav. 21 1773
[43] Rooman M and Spindel Ph 1998 Class. Quantum Grav. 15 3241
[44] Debnath U, Chakraborty S and Barrow J D 2004 Gen. Rel. Grav. 36 231
[45] Clarke C J S and Królak A 1985 J. Geom. Phys. 2 127
[46] Tipler F J 1977 Phys. Lett. A 67 8
[47] Cavaglia M 1998 Phys. Rev. D 57 5295

http://dx.doi.org/10.1088/0264-9381/21/7/005
http://dx.doi.org/10.1088/0264-9381/15/10/024
http://dx.doi.org/10.1023/B:GERG.0000010472.10539.46
http://dx.doi.org/10.1016/0393-0440(85)90012-9
http://dx.doi.org/10.1016/0375-9601(77)90508-4
http://dx.doi.org/10.1103/PhysRevD.57.5295

	1. Introduction
	2. Einstein's equations
	3. Covariant decomposition
	3.1. Observers
	3.2. Matter fields
	3.3. Spatial curvature
	3.4. Kinematics

	4. Cosmology in
	4.1. Homogeneous and isotropic spacetimes
	4.2. Homogeneous and anisotropic spacetimes
	4.3. Rotating spacetimes
	4.4. Singularities

	5. First-order formalism
	5.1. Field equations
	5.2. 2 + 1 decomposition of field equations

	6. General cosmological solutions with comoving dust
	6.1. Class 1
	6.2. Class 2
	6.3. Class 3

	7. Cosmological solutions with non-comoving dust
	7.1. General solution for dust with one non-comoving velocity
	7.2. Classification of singularities
	7.3. Asymptotic behaviour
	7.4. A non-vanishing cosmological constant
	7.5. New coordinates

	8. Scalar-field spacetimes
	8.1. Solutions with one spacelike Killing vector
	8.2. PP-wave spacetimes

	9. Discussion
	Acknowledgments
	References

